AtCoder Beginner Contest 318 E题 Sandwiches

E题:Sandwiches

标签:数学、思维
题意:给你一个长度为 N N N 的正整数序列: A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,…,A_N) A=(A1,A2,,AN),求满足下列所有条件的正整数三元组 ( i , j , k ) (i,j,k) (i,j,k) 的个数:

  • $ 1≤i<j<k≤N$
  • $ A_i=A_k$
  • $ A_i \neq A_j$

题解:这道题本质其实就是:求相等的数之间夹的不同的数的个数。举几个例子,我们来找找规律:
k k k为非 11 11 11的数
11 11 11 a a a k k k 11 11 11 => 符合要求的有 a a a
11 11 11 a a a k k k 11 11 11 b b b k k k 11 11 11 => 符合要求的有 2 a + 2 b 2a+2b 2a+2b
11 11 11 a a a k k k 11 11 11 b b b k k k 11 11 11 c c c k k k 11 11 11 => 符合要求的有 3 a + 4 b + 3 c 3a+4b+3c 3a+4b+3c
依次类推如果夹了 a 、 b 、 c 、 d a、b、c、d abcd,=> 4 a + 6 b + 6 c + 4 d 4a+6b+6c+4d 4a+6b+6c+4d
在图上可以画一画,每个 11 11 11会和对应的其他 11 11 11,组成的区间,然后去统计一下每块相邻区间的计算次数,能得到式子: k ∗ ( l e n − k ) k*(len-k) k(lenk)
实际的算法流程就先把对应数值的下标塞到一个不定长数组里面,然后求一下相邻的相同的数,每一块区间能够产生的贡献,累加一下就可以了。
代码

#include <bits/stdc++.h>
using namespace std;

const int N = 3e5 + 10;
typedef long long ll;
vector<ll> a[N];

int main() {
    ll n, x, ans = 0;
    cin >> n;
    for (ll i = 1; i <= n; i++) {
        cin >> x;
        a[x].push_back(i);
    }
    for (ll i = 1; i <= n; i++) {
        ll len = a[i].size();
        for (ll k = 1; k < len; k++) {
            ans += k * (len - k) * (a[i][k] - a[i][k-1] - 1);
        }
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值