代码随想录算法训练营第三十四天|代码随想录 96.不同的二叉搜索树

Day34 代码随想录

动态规划 代码随想录 96.不同的二叉搜索树

在这里插入图片描述

1. 初始化动态规划数组

  • vector<int> F(n + 1, 0);:创建一个长度为 n + 1 的向量 F,并将所有元素初始化为 0。F[i] 表示具有 i 个节点时,能构建出的不同结构的二叉搜索树的数量。
  • F[0] = 1;F[1] = 1;:当节点数量为 0 时,空树也被视为一种二叉搜索树,所以 F[0] 设为 1;当节点数量为 1 时,只有一种结构的二叉搜索树,即只有一个根节点的树,所以 F[1] 设为 1。

2. 动态规划过程

  • 外层 for 循环 for(int i = 2; i <= n; i++):从 2 开始遍历到 n,对于每个节点数量 i 计算能构建的不同二叉搜索树的数量。
  • 内层 for 循环 for(int j = 0; j <= i - 1; j++):对于当前的节点数量 i,假设选择第 j + 1 个节点作为根节点。那么左子树的节点数量为 j 个,右子树的节点数量为 i - j - 1 个。
  • F[i] = F[i] + F[j] * F[i - j - 1];:根据二叉搜索树的性质,不同结构的二叉搜索树的数量等于左子树的不同结构数量乘以右子树的不同结构数量。所以将所有可能的根节点选择下的左右子树结构数量乘积累加起来,就得到了具有 i 个节点时的不同二叉搜索树的数量。

3. 返回结果

  • return F[n];:最终 F[n] 存储的就是具有 n 个节点时,能构建出的不同结构的二叉搜索树的数量。
class Solution {
public:
    int numTrees(int n) {
        vector<int> F(n+1,0);
        F[0]=1;
        F[1]=1;
        for(int i=2;i<=n;i++){
            for(int j=0;j<=i-1;j++){
                F[i]=F[i]+F[j]*F[i-j-1];
            }
        }
        return F[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值