Day34 代码随想录
动态规划 代码随想录 96.不同的二叉搜索树

1. 初始化动态规划数组
vector<int> F(n + 1, 0);
:创建一个长度为 n + 1
的向量 F
,并将所有元素初始化为 0。F[i]
表示具有 i
个节点时,能构建出的不同结构的二叉搜索树的数量。F[0] = 1;
和 F[1] = 1;
:当节点数量为 0 时,空树也被视为一种二叉搜索树,所以 F[0]
设为 1;当节点数量为 1 时,只有一种结构的二叉搜索树,即只有一个根节点的树,所以 F[1]
设为 1。
2. 动态规划过程
- 外层
for
循环 for(int i = 2; i <= n; i++)
:从 2 开始遍历到 n
,对于每个节点数量 i
计算能构建的不同二叉搜索树的数量。 - 内层
for
循环 for(int j = 0; j <= i - 1; j++)
:对于当前的节点数量 i
,假设选择第 j + 1
个节点作为根节点。那么左子树的节点数量为 j
个,右子树的节点数量为 i - j - 1
个。 F[i] = F[i] + F[j] * F[i - j - 1];
:根据二叉搜索树的性质,不同结构的二叉搜索树的数量等于左子树的不同结构数量乘以右子树的不同结构数量。所以将所有可能的根节点选择下的左右子树结构数量乘积累加起来,就得到了具有 i
个节点时的不同二叉搜索树的数量。
3. 返回结果
return F[n];
:最终 F[n]
存储的就是具有 n
个节点时,能构建出的不同结构的二叉搜索树的数量。
class Solution {
public:
int numTrees(int n) {
vector<int> F(n+1,0);
F[0]=1;
F[1]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=i-1;j++){
F[i]=F[i]+F[j]*F[i-j-1];
}
}
return F[n];
}
};