【Python】mat npy npz 文件格式

1、简介

MAT 文件和 NP(.npy 或 .npz)文件是两种不同的格式,用于存储数组数据。它们分别由 MATLAB 和 NumPy 开发,主要用于各自环境中的数据存储和交换。以下是这两种格式的主要区别:

1.1 格式和用途

  • MAT 文件:这是 MATLAB 使用的二进制文件格式,通常用于保存变量、矩阵以及其他类型的数据。它支持多种数据类型,并且可以包含多个变量。MAT 文件有两种主要版本:v4 (Level 1.0), v6 and v7 to v7.2 (up to HDF5 based)。
  • NPY/ NPZ 文件
    • .npy:NumPy 的单文件格式,设计用来高效地存储单一的同构数组(即具有相同数据类型的数组)。
    • .npz:这是一个 ZIP 存档,里面可以包含多个 .npy 文件,每个文件对应一个数组。这允许在一个 .npz 文件中存储多个命名数组。

1.2 兼容性

  • MAT 文件:主要用于 MATLAB 环境,但可以通过其他软件(如 Python 的 SciPy 模块)读取。
  • NPY/NPZ 文件:专门为 Python 和 NumPy 设计,但在其他编程语言中也有相应的库可以读写这些格式。

1.3 加载方法

  • MAT 文件:在 Python 中使用 scipy.io.loadmat() 函数来加载 MAT 文件。
  • NPY/NPZ 文件:使用 numpy.load() 函数,对于 .npz 文件,返回的是一个类似于字典的对象,需要通过键名访问其中的数组。

1.4 性能与特性

  • MAT 文件:由于其设计目的是为了与 MATLAB 配合使用,因此它支持 MATLAB 特有的数据类型,比如结构体和单元格数组等复杂数据类型。
  • NPY/NPZ 文件:专注于提供高效的数值数组存储解决方案,支持直接存储 Python 基础数据类型以及复杂的多维数组,但不直接支持像 MATLAB 结构体这样的复杂数据结构。

1.5 扩展性和灵活性

  • MAT 文件:适合于需要与 MATLAB 兼容的应用场景,尤其是当你需要处理 MATLAB 特定的数据结构时。
  • NPY/NPZ 文件:非常适合于纯 Python/NumPy 工作流,特别是在科学计算和数据分析领域中。

1.6 总结

选择哪种格式取决于你的具体需求。如果你的工作流程主要围绕 MATLAB 进行,那么 MAT 文件可能是更合适的选择。然而,如果你主要使用 Python 和 NumPy 来进行数据分析或机器学习任务,那么 NPY 或 NPZ 文件将是更好的选择。此外,如果你希望跨平台共享数据并且保持良好的性能,NPY/NPZ 文件也提供了非常有效的解决方案。

2、案例

2.1 mat

from scipy.io import loadmat
data = loadmat('arr1')

# 查看字典keys
keys = list(data.keys())
print(keys)

print(data[keys[3]].shape)

2.2 npy

import numpy as np
data = np.load('arr1.npy')
print(data.shape)

2.3 npz

import numpy as np
data = np.load('out.npz')

# 查看所有可用变量名的两种方式
keys = data.files
print(keys)
keys = list(data.keys())
print(keys)

print(data[keys[0]])
print(data[keys[2]].shape)

2.4 其它

目标正确代码
加载 .npy.npz 文件(普通数组)numpy.load('filename.npy')
加载含 pickle 数据的 .npy/.npz 文件numpy.load('filename.npy', allow_pickle=True)

如果有不确定的文件类型,可以运行file命令查看内容,例如file out,文件out为mat:

file out
out: Matlab v5 mat-file (little endian) version 0x100, platform posix, created Thu May  8 11:24:24 2025

代码运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值