7-36 朋友圈 (25 分)
某学校有N个学生,形成M个俱乐部。每个俱乐部里的学生有着一定相似的兴趣爱好,形成一个朋友圈。一个学生可以同时属于若干个不同的俱乐部。根据“我的朋友的朋友也是我的朋友”这个推论可以得出,如果A和B是朋友,且B和C是朋友,则A和C也是朋友。请编写程序计算最大朋友圈中有多少人。
输入格式:
输入的第一行包含两个正整数N(≤30000)和M(≤1000),分别代表学校的学生总数和俱乐部的个数。后面的M行每行按以下格式给出1个俱乐部的信息,其中学生从1~N编号:
第i个俱乐部的人数Mi(空格)学生1(空格)学生2 … 学生Mi
输出格式:
输出给出一个整数,表示在最大朋友圈中有多少人。
输入样例:
7 4
3 1 2 3
2 1 4
3 5 6 7
1 6
输出样例:
4
这道题主要就是考察了一个并查集的问题,如果熟练掌握并查集的结构能够很轻松的解决问题。
我们可以先定义一个root数组,来存放每一个学生的信息,并且初始认为每个人都是自己一个独立的圈子。
所谓并查集,“并”就是把属于一个圈子的个体合并为一个大圈子,“查”就是检查相互之间是否来自相同的圈子。
int find(int a)
{
int t=a;
while(root[t]!=t)
{
t=root[t];
}
int i=a,j;
while(root[i]!=t)
{
j=root[i];
root[i]=t;
i=j;
}
return t;
}
这段代码前半段(第一个while循环部分)就是查找a的根,后半段则是路径压缩操作,令根t的所有子孙都直接指向t,从而简化为只有两层的树状结构,方便操作
void join(int a,int b)
{
int k1=find(a);
int k2=find(b);
if(k1!=k2)
root[k1]=k2;
}
当一个圈子的两个人根不同时,就让后一个人成为前一个人的根
只要把这两点搞清楚,这道题就已经解决了
#include<iostream>
using namespace std;
int root[30001];
int find(int a)
{
int t=a;
while(root[t]!=t)
{
t=root[t];
}
int i=a,j;
while(root[i]!=t)
{
j=root[i];
root[i]=t;
i=j;
}
return t;
}
void join(int a,int b)
{
int k1=find(a);
int k2=find(b);
if(k1!=k2)
root[k1]=k2;
}
int main()
{
int n,m;
int count,first,second;
cin>>n>>m;
for(int i=1;i<=n;i++)
root[i]=i;
for(int i=0;i<m;i++)
{
cin>>count;
cin>>first;
for(int k=1;k<=count-1;k++)
{
cin>>second;
join(first,second);
}
}
int num[30001]={0};
for(int i=1;i<=n;i++)
{
num[find(i)]++;
}
int max=0;
for(int i=1;i<=n;i++)
{
if(num[i]>max)
max=num[i];
}
cout<<max;
return 0;
}
256

被折叠的 条评论
为什么被折叠?



