如何改善深层神经网络

对于深度学习,模型训练过程中可能会遇到一些问题,这些问题可能出自训练阶段,也可能出自测试阶段。训练阶段的问题主要是模型可能根本就train不出来,测试阶段的问题主要是过拟合的问题。对于不同的问题,我们采用不同的方法解决,解决方法如下图所示: 我们分别就训练阶段和测试阶段来看一下具体问题,及其解决...

2019-05-21 13:25:46

阅读数 10

评论数 0

机器学习算法的一般结构

1. 算法框架 跟把大象放进冰箱里一样,李宏毅老师将机器学习方法总结为三步,如下: 总结来说,就是如下三步: Define a set of function(Model) Goodness of function(Objective Function) Pick the best funct...

2019-05-13 17:48:02

阅读数 27

评论数 0

SVM的梯度下降解释及其算法比较

首先说明一点,SVM的算法原理和其它机器学习算法是一致的,其中引入了两个最核心的概念就是hinge loss和kernel trick,这篇本章主要结合这两个部分说明SVM。 ...

2019-05-13 16:18:27

阅读数 172

评论数 0

推荐系统之YouTube推荐算法中的召回策略

YouTube深度学习推荐系统论文

2019-05-08 17:40:32

阅读数 106

评论数 0

推荐系统中的常用评测指标

推荐系统中的评价指标有很多,下面来系统的总结一下,这些指标有的适用于二分类问题,有的适用于对推荐列表Topk的评价。 1、精确率、召回率、F1值 我们首先来看一下混淆矩阵,对于二分类问题,真实的样本标签有两类,我们学习器预测的类别有两类,那么根据二者的类别组合可以划分为四组,如下表所示: 上表即...

2019-05-07 19:11:14

阅读数 32

评论数 0

从后验概率到逻辑回归,从逻辑回归到神经网络

从后验概率到逻辑回归,从逻辑回归到神经网络 1. 后验概率 对于给定数据,我们首先假设数据是由某种分布产生的,这样,根据贝叶斯公式我们可以得到后验概率分布,将后验概率最大的类作为xxx的类输出。后验概率计算根据贝叶斯定理进行: (1)P(Y=ck∣X=x)=p(X=x∣Y=ck)P(Y=ck)∑k...

2019-05-07 13:52:07

阅读数 83

评论数 0

深度学习中的优化方法

深度学习中的优化方法: 以下内容会包括下面几种优化方法: Gradient Descent Adagrad Momentum RMSProP Adam 1. Gradient Descent 首先,Gradient Descent是我们最常用的优化方法,梯度下降的参数更新公式为: (1)θi=...

2019-05-06 13:54:07

阅读数 35

评论数 0

tf.nn.embedding_lookup函数的工作原理

tf.nn.embedding_lookup函数的工作原理 函数定义: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=Tr...

2019-05-01 15:04:43

阅读数 35

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭