omnispace的博客

专注AI,物联网,区块链,安卓以及相关安全技术

排序:
默认
按更新时间
按访问量
RSS订阅

Generative Adversarial Network (GAN) papers (2018.2.4 更新)

AdversarialNetsPapersThe classic about Generative Adversarial NetworksThe First paper [Generative Adversarial Nets] [Paper][Code](the First paper of ...

2017-11-07 15:38:19

阅读数 4960

评论数 0

GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

GAN是概率统计到深度学习世界“秀”存在 生成模型分为两个部分:生成模型+判别模型。生成模型学习联合概率分布p(x,y),而判别模型学习条件概率分布p(y|x)。  他们之间对抗均衡的过程,就相当于统计中的蒙特卡洛拟合最佳分布的过程。  分布公式的重要性:分布公式之后,那么可以造无数...

2018-01-18 16:15:21

阅读数 681

评论数 0

GAN原理"潜"析

为了后面介绍seqGAN + RL的应用,先来介绍一下这个很火的GAN,火到似乎女娲上帝都是“干”出来的… 稍提一点背景。统计机器学习中,这个世界是从分布中抽样产生的(假设P(world)是产生这个世界的分布,那这个世界的每一个东西都是从P里面iid抽出来的),我们只要能拿到这个分布,就可创建一个...

2018-01-16 13:57:55

阅读数 251

评论数 0

记录一次与大神们的关于GAN应用于NLP的讨论 (后续)

这次的讨论可能是因为题目不够大众,或者是做这方面的同学们太过羞涩,因此讨论的内容基本偏题,最后形成了大家自由讨论的局面。但是只要仔细观察,是可以看到其中是有着耀眼的闪光点的,至少对于我来说是这样的。 重申以下观点: 下边的讨论问题与解答有些是文不对题的,首先是因为按照发言顺序整理,难免有插话的存...

2018-01-16 09:58:18

阅读数 564

评论数 0

记录一次与大神们的关于GAN应用于NLP的讨论

说实话,是聆听了大神们,本人只是捧哏似的嗯、啊了几句。 之前paperweekly的GAN讨论组要进行一次讨论,给出了很多议题进行投票。里边有GAN in NLP、GAN and RL、半监督GAN等我比较感兴趣的话题。也有图像相关的关于GAN的正统问题。 没想到最后GAN in NL...

2018-01-16 09:56:52

阅读数 233

评论数 0

SeqGAN——对抗思想与增强学习的碰撞

SeqGAN这篇paper从大半年之前就开始看,断断续续看到现在,接下来的工作或许会与GAN + RL有关,因此又把它翻出来,又一次仔细拜读了一番。接下来就记录下我的一点理解。 paper链接 1. 背景 GAN在之前发的文章里已经说过了,不了解的同学点我,虽然现在GAN...

2018-01-16 09:54:45

阅读数 709

评论数 0

生成对抗网络(GANs)最新家谱:为你揭秘GANs的前世今生

作者:GuimPerarnau 编译:KatherineHou、朝夕、KatrineRen、ShanLIU、笪洁琼、钱天培 生成对抗网络(GAN)一经提出就风光无限,更是被YannLecun誉为“十年来机器学习领域最有趣的想法”。 GAN“左右互搏”的理念几乎众所周知,但正如卷积...

2018-01-16 09:49:23

阅读数 5161

评论数 0

面向开发者的2018年AI趋势分析

摘要: 本文从开发者的角度分析2018年AI的趋势:拿来即用的AI领域、算法与技术。例如GANs、ONNX、Zoo、AutoML、语音识别、时间序列分析、NLP、高智能机器人等。在2017年有些人工智能的技术已经变得非常成熟,并已做好了大规模应用的准备。这就是本文将要讨论的问题---介绍当前的工作...

2018-01-15 15:46:03

阅读数 250

评论数 0

深度学习新星:GAN的基本原理、应用和走向

近年来,基于数据而习得“特征”的深度学习技术受到狂热追捧,而其中GAN模型训练方法更加具有激进意味:它生成数据本身。GAN是“生成对抗网络”(Generative Adversarial Networks)的简称,由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域。201...

2017-12-31 15:37:28

阅读数 342

评论数 0

GAN——UNIT简单梳理

自从2014年Goodfellow提出GAN(Generative adversarial networks)模型之后,在机器学习领域就砸下了一个大大的陨石坑,此后至今,已经有成百上千篇的GAN相关论文在Arxiv以及各大顶级会议期刊上被发表。时至今日,GAN的各种相关改进模型已经在CV,NLP,...

2017-11-13 14:20:03

阅读数 1420

评论数 0

CycleGAN的原理与实验详解

CycleGAN是在今年三月底放在arxiv(地址:[1703.10593] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks)的一篇文章,同一时期还有两篇非常类似的DualGAN和Dis...

2017-11-13 14:13:01

阅读数 3463

评论数 3

Generative Adversarial Networks 生成对抗网络的简单理解

1. 引言 在对抗网络中,生成模型与判别相竞争,判别模型通过学习确定样本是来自生成模型分布还是原始数据分布。生成模型可以被认为是类似于一组伪造者,试图产生假币并在没有检测的情况下使用它,而判别模型类似于警察,试图检测假币。 在这个游戏中的竞争驱动两个团队改进他们的方法,直到假冒与真正的物品难...

2017-11-07 15:17:32

阅读数 463

评论数 0

An introduction to Generative Adversarial Networks (with code in TensorFlow)

There has been a large resurgence of interest in generative models recently (see this blog post by OpenAI for example). These are models that can l...

2017-11-07 15:15:03

阅读数 265

评论数 0

GAN by Example using Keras on Tensorflow Backend

Generative Adversarial Networks (GAN) is one of the most promising recent developments in Deep Learning. GAN, introduced by Ian Goodfellow in 2014,...

2017-10-30 15:15:31

阅读数 574

评论数 0

SimGAN-Captcha代码阅读与复现

项目介绍 项目地址:戳这里 大概的讲一下这个项目的起因是大神要参加HackMIT,需要他们在15000张验证码中识别出10000张或者每个字符的识别准确率要到90%。然后他不想标注数据(就是这么任性~)。于是决定先自己生成一批验证码(synthesizer合成器),然后把这些验证码用一个refin...

2017-10-17 06:32:44

阅读数 2464

评论数 3

GAN for NLP (论文笔记及解读

GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响。“深度解读:GAN模型及其在2016年度的进展”[1]一文对过去一年GAN的进展做了详细介绍,十分推荐学习GAN的新手们读读。这篇文章主要介绍GAN在NLP里的应用(可以算是论文解读或者论文笔记),并未涉及GAN的基...

2017-09-22 13:11:45

阅读数 883

评论数 0

生成对抗网络简介(包含TensorFlow代码示例)【翻译】

判别模型 vs. 生成模型示例:近似一维高斯分布提高样本多样性最后的思考关于GAN的一些讨论 最近,大家对生成模型的兴趣又开始出现(OpenAI关于生成模型的案例)。生成模型可以学习如何生成数据,这些数据和我们给定的数据很类似(真实数据)。我们用一个例子来描述这背后的原理,比如,我们希望...

2017-08-23 14:48:07

阅读数 947

评论数 0

TFboys:使用Tensorflow搭建深层网络分类器

前言 根据官方文档整理而来的,主要是对Iris数据集进行分类。使用tf.contrib.learn.tf.contrib.learn快速搭建一个深层网络分类器, 步骤 导入csv数据搭建网络分类器训练网络计算测试集正确率对新样本进行分类 数据 Iris数据集包含150行数据,有三种不同的...

2017-08-23 14:42:21

阅读数 339

评论数 0

Generative Adversarial Networks 生成对抗网络的简单理解

1. 引言 在对抗网络中,生成模型与判别相竞争,判别模型通过学习确定样本是来自生成模型分布还是原始数据分布。生成模型可以被认为是类似于一组伪造者,试图产生假币并在没有检测的情况下使用它,而判别模型类似于警察,试图检测假币。 在这个游戏中的竞争驱动两个团队改进他们的方法,直到假冒与真正的物品难以分...

2017-08-23 14:39:18

阅读数 252

评论数 0

简述生成式对抗网络 GAN

本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程和代码实现来解释具体是如何实现并执行这个算法的,最后通过给出一个基于对抗网络改写的去噪网络,效果虽然挺差的,但是还是挺有意思的。 【转载请注明出处】chenr...

2017-07-04 02:11:43

阅读数 768

评论数 1

提示
确定要删除当前文章?
取消 删除