omnispace的博客

专注AI,物联网,区块链,安卓以及相关安全技术

机器学习 + 深度学习 + 计算机视觉 + 自然语言处理: 原理, 实践以及应用 --- 干货分享(持续更新…)

Stanford c231n (Youtube) ××××××Google Deep Learning Course on Udacity [Coursera] Neural Networks for Machine Learning — Geoffrey Hinton 2016 Neural n...

2017-02-06 17:44:30

阅读数 2218

评论数 0

Android Context getSystemService分析

我们知道一个应用的Context个数是Activity个数+Service个数+1 当我们希望获取到系统服务时,可以调用Context的getSystemService方法,如获取到ActivityManager: ActivityManager manager = (ActivityMana...

2017-02-25 09:46:18

阅读数 457

评论数 0

CMU 11642 Search Engines - 大纲梳理

CMU 11642 的课程笔记大纲。涉及了很多算法,详细见具体的链接,代码就不贴了。欢迎讨论,欢迎指正~ Jamie 搜索引擎这门课,还是很有收获的,课上除了一些基本概念和算法外还有很多最新研究,涵盖内容非常广,绝对不止一本书。据 Jamie 讲,在 yahoo 等公司搜索部门的学生回来说现...

2017-02-18 05:44:25

阅读数 1540

评论数 0

Distributed Systems笔记-NFS、AFS、GFS

CMU 95702 关于 NFS、AFS、GFS 的笔记。 NFS(Network File System) 目的: Your files are available from any machine.Distribute the files and we will not ha...

2017-02-18 05:42:07

阅读数 1072

评论数 0

Distributed Systems笔记-Cryptographic Protocols

CMU 95702 Distributed Systems 笔记。简单介绍几种加密、签名方式。 AES 和 RSA 笔记 的续章。 Scenario 1 (Like WWII 和 TEA) 双方共享一把密钥。A 用密钥对信息加密。E(KAB,Mi)E(KAB,Mi),发送给 ...

2017-02-18 05:40:46

阅读数 319

评论数 0

Distributed Systems笔记-middlewares

CMU 95702 Distributed Systems 笔记。简单介绍分布式系统中解决 interoperability concern 的几种方案 Cobra’s CDR, Java serialization 和 XML/JSON。这章整理的比较简单。 一言以蔽之,middlew...

2017-02-18 05:39:45

阅读数 453

评论数 0

Distributed Systems笔记-Web Service Design Patterns

CMU 95702 Distributed Systems 笔记。简单介绍 XML-RPC、SOAP、REST 三种 web 服务实现方案以及 RPC、Message、Resource 三种 patterns。 Web 服务实现方案 主流的 Web 服务实现方案有以下三种,因为 XML...

2017-02-18 05:38:11

阅读数 1145

评论数 1

推荐系统--用户行为和实验设计

主要介绍推荐系统用户行为数据、实验设计,是接下来算法实验的基础。 用户行为 用户行为数据 用户行为分为 显性 和 隐性 两种。 显性反馈行为(explicit feedback) 用户评分、喜欢/不喜欢隐性反馈行为(implicit feedback) 页面浏览行为、消...

2017-02-18 05:34:22

阅读数 1743

评论数 0

TensorFlow 实战 MINST

工作中需要实现 CNN、RNN 模型,于是开始学习 TensorFlow。这是第一篇,MNIST的实战。官方文档讲的很详细,这里我不过是用我的思路整理一遍,方便日后的查阅。 TensorFlow 介绍 综述 TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节...

2017-02-18 05:32:17

阅读数 4553

评论数 0

爬虫总结(五)-- 其他技巧

补充前面没有提到的一些技巧。 模拟登录 研究源码 以 github 登录(https://github.com/login) 为例,查看html源码会发现表单里面有个隐藏的authenticity_token值,这个是需要先获取然后跟用户名和密码一起提交的。 123...

2017-02-18 05:30:52

阅读数 1559

评论数 0

爬虫总结(四)-- 分布式爬虫

分布式爬虫的演习。 分布式爬虫问题其实也就是多台机器多个 spider 对 多个 url 的同时处理问题,怎样 schedule 这些 url,怎样汇总 spider 抓取的数据。最简单粗暴的方法就是将 url 进行分片,交给不同机器,最后对不同机器抓取的数据进行汇总。然而这样每个 spid...

2017-02-18 05:29:56

阅读数 7435

评论数 1

爬虫总结(三)-- cloud scrapy

发现了一个比较好玩的东西,scrapinghub,试着玩了一下 cloud scrapy,因为就它是免费的。。最大优点是可以将爬虫可视化。这里就简单记录一下它怎么用。 注册账号 & 新建 scrapy cloud project 在scrapyinghub 官网 注册账号 ...

2017-02-18 05:28:20

阅读数 1742

评论数 0

爬虫总结(二)-- scrapy

用现成的框架的好处就是不用担心 cookie、retry、频率限制、多线程的事。这一篇把上一篇的实例用 scrapy 框架重新实现一遍。主要步骤就是新建项目 (Project) –> 定义目标(Items)–> 制作爬虫(Spider)–> 存储结果(Pipeline) ...

2017-02-18 05:22:16

阅读数 6363

评论数 1

爬虫总结(一)-- 爬虫基础 & python实现

爬虫在平时也经常用,但一直没有系统的总结过,其实它涉及了许多的知识点。这一系列会理一遍这些知识点,不求详尽,只希望以点带面构建一个爬虫的知识框架。这一篇是概念性解释以及入门级爬虫介绍(以爬取网易新闻为例)。 爬虫基础 什么是爬虫 爬虫说白了其实就是获取资源的程序。制作爬虫的总体分...

2017-02-18 05:20:44

阅读数 986

评论数 0

caffe实战笔记

Caffe简要介绍: Caffe还没有windows版本,所以我需要远程登录linux服务器 Caffe主要处理图片/图片序列  Caffe读取的数据格式 从专用的数据库中读取(lmdb、leveldb) 直接读取图片 从内存中读取(会占...

2017-02-18 04:56:09

阅读数 538

评论数 0

Caffe 初识,揭开面纱

这一段时间把caffe官网上的例子跑了一下,对caffe有了一个大概的了解。如果你想对caffe有个比较清晰的了解,建议认真阅读官网上的资料,尤其在caffe资料极少的情况下,这种方法是最有效的途径,可以让你少走许多弯路,不要上来就在网上随便找个教程配置环境,上来就想跑例子。。博主就是赤裸裸的例子...

2017-02-18 04:53:54

阅读数 550

评论数 0

Caffe使用step by step:caffe框架下的基本操作和分析

caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需要一个比较长的过程,这个过程中你需要对caffe中很多东西,细节进行深入的理解,这样才可以知道为什...

2017-02-18 04:52:48

阅读数 402

评论数 0

Linux Used内存到底哪里去了?

原创文章,转载请注明: 转载自系统技术非业余研究 本文链接地址: Linux Used内存到底哪里去了? 前几天 纯上 同学问了一个问题: 我ps aux看到的RSS内存只有不到30M,但是free看到内存却已经使用了7,8G了,已经开始swap了,请问ps aux的实际物理内存统计...

2017-02-18 03:47:55

阅读数 921

评论数 0

Android内存分析

最近简单学些了android内存分析,下面为一些学习笔记和整理。   一、内存数据的获取 1. 查看手机系统内存信息 adb pull /system/build.prop 打开build.prop可以查看堆分配的一些信息:   2. VSS RSS USS PSS获取 首先理...

2017-02-18 03:46:36

阅读数 315

评论数 0

RNN以及LSTM的介绍和公式梳理

目录(?)[+] 前言 好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RNN以及LSTM的算法流程并推导一遍应该是没有问题的。 RNN最近做出了很多非...

2017-02-18 03:36:34

阅读数 2122

评论数 0

提示
确定要删除当前文章?
取消 删除