omnispace的博客

专注AI,物联网,区块链,安卓以及相关安全技术

High Scalability of Website Architecture

Here are some of the favorite posts on HighScalability... All the Stuff the Internet Says on Scalability articles. Explain the Cloud Like I'm 10 Y...

2019-05-29 17:11:31

阅读数 65

评论数 0

网站架构相关PPT、文章整理(更新于2009-7-15)

在这篇blog中放置了我收集的一些网站架构相关的PPT和文章,提供给大家下载,如果大家有相关的好的PPT、文章的话,也欢迎推荐给我,非常感谢,:),这篇blog的内容也会随着我收集的东西增加而变化,同时也会增加我对于这些PPT、文章的看法和评价。 1、amazonAmazon的分布式key-val...

2019-05-29 17:08:58

阅读数 57

评论数 0

【译】Understanding Linked Data Formats

在本文中,我们将通过检查其四种最常见的格式来探索RDF的外观:N-Triples,Turtle,JSON-LD和RDF / XML。 编辑(04/05/2019):我将本文扩展为包含JSON-LD并添加了下面的内容部分。 我原本没有包含JSON-LD,因为我从未真正使用它,但同意需要添加它才能完...

2019-05-28 18:32:41

阅读数 93

评论数 0

Contextualizing Airbnb by Building Knowledge Graph

我想你去洛杉矶旅行。 第一步是访问A irbnb.com并搜索“洛杉矶”。在后端,查询“洛杉矶”被翻译成地图上的一个区块; 此块中的可用房屋将在许多搜索结果页面中返回。 这足以让你制定旅行计划吗? 随着Airbnb逐渐走向成为端到端的旅行平台 ,我们越来越重要的是提供旅行见解,帮助人们决定何时旅...

2019-05-28 18:28:58

阅读数 53

评论数 0

【译】Deep Learning with Knowledge Graphs

上周,我在Connected Data London上就Octavian开发的方法发表了演讲,使用神经网络在知识图上执行任务。 这是来自Connected Data London的演讲录音: 在这篇文章中,我将总结那篇演讲(包括大部分幻灯片)并提供对我们影响最大的论文的链接。 要了解有关...

2019-05-28 18:26:28

阅读数 51

评论数 0

【译】Attacks against machine learning — an overview

这篇博客文章调查了针对AI(人工智能)系统的攻击技术以及如何防范它们。 在较高级别,对分类器的攻击可以分为三种类型: 对抗性输入 ,这是特制的输入,其目的是可靠地错误分类以逃避检测。 对抗性输入包括旨在逃避防病毒的恶意文档,以及试图逃避垃圾邮件过滤器的电子邮件。 数据中毒攻击 ,涉及将训练对...

2019-05-28 17:53:53

阅读数 40

评论数 0

AI新方向:对抗攻击

01 概述 我在国内的两个著名的学术搜索网站 AMiner 和 Acemap 进行了调查,以 adversarial attack和相近意思的 poisoning attack 等词作为关键词搜索了相关的论文,以下是两个网站给出的论文数据分析图表。 一方面,从图中很明显可以看出,在 201...

2019-05-28 17:46:07

阅读数 61

评论数 0

详解机器学习中的梯度消失、爆炸原因及其解决方法

前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案。本文分为三部分,第一部分主要直观的介绍深度学习中为什么使用梯度更新,第二部分主要介绍深度学习中梯度消失及爆炸的原因,第三部分对提出梯度消失及爆炸的解决方案。有基础的同鞋可以跳着阅读。 其中,梯度消失爆炸的解决方案主要包括以下...

2019-05-28 17:13:59

阅读数 54

评论数 0

《微服务:从设计到部署》中文版

本书为 Chris Richardson 和 Floyd Smith 联合编写的微服务电子书 Designing and Deploying Microservices 中文版,其从不同角度全面介绍了微服务:微服务的优点与缺点、API 网关、进程间通信(IPC)、服务发现、事件驱动数据管理、微服务...

2019-05-28 17:04:18

阅读数 38

评论数 0

从分布式一致性算法到区块链共识机制

引言 分布式一致性是一个很“古典”的话题,即在分布式系统中,如何保证系统内的各个节点之间数据的一致性或能够就某个提案达成一致。这个问题想必对于很多技术同学而言并不陌生,几乎在所有的分布式系统中都会遇到,比如hdfs、mq、zookeeper、kafka、redis、elasticsearch等。...

2019-05-28 16:59:51

阅读数 166

评论数 0

【译】深入理解LSTM网络

递归神经网络 人类不会每时每刻都开始思考。 当你阅读这篇文章时,你会根据你对之前单词的理解来理解每个单词。 你不要扔掉所有东西,然后再从头开始思考。 你的想法有持久性。 传统的神经网络无法做到这一点,这似乎是一个主要的缺点。 例如,假设您想要对电影中每个点发生的事件进行分类。 目前尚不清楚传统...

2019-05-27 15:52:43

阅读数 26

评论数 0

IntelliJ IDEA 完美破解 永久激活 (持续更新)- 最新更新 2019.5.24 版本 2019.1.2

Table of Contents 申明: 破解仅供学习和参考, 请购买软件支持正版。 更新历史 1. 安装 2. 修改host文件 3. 安装破解文件 (这一步最关键) 3.1 获取破解文件 3.2 设置IDE启动时读取破解文件 3.2.1 直接修改vmoptions 文件 3...

2019-05-27 15:04:27

阅读数 1022

评论数 0

Tensorflow - Named Entity Recognition

Tensorflow - Named Entity Recognition Each folder contains a standalone, short (~100 lines of Tensorflow), main.py that implements a neural-network ...

2019-05-08 16:50:41

阅读数 117

评论数 0

用双向lstm+CRF做命名实体识别(附tensorflow代码)——NER系列(四)

这一篇文章,主要讲一下用深度学习(神经网络)的方法来做命名实体识别。现在最主流最有效的方法基本上就是lstm+CRF了。其中CRF部分,只是把转移矩阵加进来了而已,而其它特征的提取则是交由神经网络来完成。当然了,特征提取这一部分我们也可以使用CNN,或者加入一些attention机制。 接下来,...

2019-05-08 15:00:38

阅读数 417

评论数 1

用CRF做命名实体识别——NER系列(三)

在上一篇文章《用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)》中,我们使用HMM模型来做命名实体识别,将问题转化为统计概率问题,进行求解。显然,它的效果是非常有限的。 在深度学习技术火起来之前,主流的、最有效的方法,就是CRF(条件随机场)模型。本文不对CRF模型进行展开讲解,而是...

2019-05-08 14:58:58

阅读数 113

评论数 0

用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)

上一篇文章里《用规则做命名实体识别——NER系列(一)》,介绍了最简单的做命名实体识别的方法–规则。这一篇,我们循序渐进,继续介绍下一个模型——隐马尔可夫模型。 隐马尔可夫模型,看上去,和序列标注问题是天然适配的,所以自然而然的,早期很多做命名实体识别和词性标注的算法,都采用了这个模型。 这篇...

2019-05-08 14:56:56

阅读数 320

评论数 0

用规则做命名实体识别——NER系列(一)

兑现自己上一篇立下的flag,从头开始写这几个月对命名实体识别这个任务的探索历程。这是这个系列的第一篇——用规则来做命名实体识别。 1.什么是命名实体识别 命名实体识别(Named Entity Recognition,简称NER),是一个基本的NLP任务,按照传统,下面是百度百科对它的解释:...

2019-05-08 14:55:21

阅读数 115

评论数 0

Learn About Windows Console & Windows Subsystem For Linux (WSL)

Windows Subsystem for Linux (WSL) has made a lot of waves since it was announced at //Build 2016 in April 2016. But as with any new technology, many ...

2019-05-08 04:21:46

阅读数 36

评论数 0

Must-read papers on GNN

GNN: graph neural network Contributed by Jie Zhou, Ganqu Cui and Zhengyan Zhang. Survey papers Graph Neural Networks: A Review of Methods and ...

2019-05-06 16:55:25

阅读数 321

评论数 0

分布式入门,怎样用PyTorch实现多GPU分布式训练

这篇文章旨在阐述训练大规模深度学习模型时的分布式计算思想。 选自 Medium,作者:Ayan Das,机器之心编译,参与:Nurhachu Null、路。 具体来讲,本文首先介绍了分布式计算的基本概念,以及分布式计算如何用于深度学习。然后,列举了配置处理分布式应用的环境的标准需求(硬件和软件...

2019-05-06 16:30:02

阅读数 181

评论数 0

提示
确定要删除当前文章?
取消 删除