领域LLM九讲——第3讲 从多模态数据分析chunk方法——语义统一目标

领域LLM九讲——第3讲 从多模态数据分析chunk方法——语义统一目标

上一小节介绍了多模态数据分类,本节详细介绍多模态数据如何实现语义目标统一

1.1 技术背景

在面向多模态数据的 RAG(Retrieval-Augmented Generation)系统中,“分块”(Chunking)不仅是将海量异构数据拆分为可管理小单元的过程,更是实现跨模态“语义统一”的关键环节。通过合理的分块策略,系统能够在检索时将同一个“语义片段”在文本、图像、音频、视频等多种表示形式之间进行对齐,从而保证最终传递给 LLM 的上下文在不同模态间保持一致。

  • chunk Pipeline

1.数据接入 → 2. 初始预处理 → 3. 多模态预处理 → 4. 分块边界检测 → 5. Chunk 提取与构造 → 6. 向量化与存储 → 7. 检索与生成

  • 语义统一目标
    在“分块边界检测”阶段,确保同一语义片段(如某段文字描述、对应的示意图区域、所述段落的音频片段、所属视频镜头)被拆分为同名同 ID 的 Chunk,并在“Chunk 提取”阶段将这些异构模态内容合并到同一个逻辑单元中。这样,无论下游在检索或生成时,只需匹配一次语义向量,就能同时检索到相关的文本、图像、音频或视频信息,实现跨模态语义对齐与融合

1.2 节点功能

在这里插入图片描述

1.2.1 数据接入(Data Ingestion)

  • 目标与挑战
    多源异构格式:来源可以是 PDF、DOCX、PPTX、HTML、CSV 等文档,也可以是 JPEG/PNG 等图像、MP3/WAV 等音频、MP4/AVI 等视频。不同格式的接入接口和权限管理往往各不相同,且文件规模可能从几 KB 到上 GB 不等,如何在最初阶段统一接入并打标签(如文件 ID、来源渠道、上传时间)是确保后续“分块”能正确回溯与溯源的基础。
    批量同步与增量变更:在持续更新的企业知识库或媒体库中,常有新文件被实时上传或旧文件被修改。系统需要借助分布式任务调度(如 Airflow、Prefect)或消息队列(Kafka、RabbitMQ)机制实时感知文件变更,并进行去重处理(如对文件内容做哈希比对),避免同一数据被重复分块,保证后续向量化时的一致性。

1.2.2 初始预处理(Initial Preprocessing)

  • 目标与挑战
    文本统一与编码转换:不同来源的文档可能编码(UTF-8、GBK、Latin-1 等)不一致,需要用 ftfy、chardet 等库自动检测并转换,确保输入到 NLP/ASR 模型时不会产生乱码。
    多媒体文件转码:图像分辨率和视频编码参差不齐(如 H.264、H.265、VP9),需要用 FFmpeg 批量转码:视频统一为 30fps、H.264 编码;音频统一为 16kHz、单声道 WAV;图像统一为 1080p 或更低分辨率 JPEG/PNG,以保证后续 OCR 或视觉模型(如 CLIP)处理时的稳定性与性能。

1.2.3 多模态预处理(Modality-Specific Preprocessing)

1.2.3.1 文本预处理
  • OCR 与布局解析
    对于扫描 PDF 或图片中的文字,需要借助 Tesseract、EasyOCR 等 OCR 工具提取文本和其像素级坐标;同一页中若有多栏或表格、公式并存,需使用 pdfplumber、PyMuPDF 或 LayoutLM 等库识别布局,将正文、页眉页脚、脚注与表格区域区分开来,保证分块时文本语义不混淆。

  • 多语言与多字符集
    针对含有多语言文本(中英日韩等),OCR 和后续 NLP 要加载对应语言包并统一编码,以保证对同一语义的不同语言描述能够在向量空间里保持相似度。。

1.2.3.2 图像预处理
  • OCR 引导的区域切分
    当一张图像(例如产品规格表、科研论文中的图表)包含多个信息区域时,先用 OCR 提取所有文字框并检测其坐标,再根据文字框的行列关系将图像划分为不同“语义区域”(Region)——例如图表标题、图例、轴标签、脚注等,使每个区域都能对应一个独立的文本分块。若某区域无文字(如纯流程图或图片展示),则后续使用语义分割(如 U-Net、SAM)或目标检测(如 YOLO、Faster R-CNN)提取其中的人物、设备、图标等关键视觉成分。

  • Patch-Based 与聚类合并
    对于超大分辨率图像(如航拍卫星图),可先将其切成固定大小的 Patch(如 256×256 像素),并对每个 Patch 使用 CLIP 生成视觉嵌入;再通过相似度聚类将包含同一物体或连贯信息的邻近 Patch 合并为更大语义区域,从而避免在无意义边界处分割同一物体。

1.2.3.3 音频预处理
  • VAD + 说话人分离
    使用 WebRTC VAD、pyAudioAnalysis 等工具检测有声片段,将无声或噪音占比高的部分剔除;在多人对话场景下,先用 pyannote.audio 做说话人分离,将每位说话人的片段独立出来,保证后续 ASR 拆分时能获得更干净、语义连贯的文本。

选用 Whisper、NVIDIA Jarvis-ASR 或开源 SpeechRecognition,将每个有声段转换为带时间戳的文本,形成 <start_time, end_time, transcript> 的格式,为后续“语义分块”提供断点参照。

1.2.3.4 视频预处理
  • 镜头/场景检测
    使用 PySceneDetect 或基于 OpenCV 的帧差法检测镜头切换点,得到若干“镜头段”(Shot)。但帧差法对快速运动场景容易误判,因而更推荐基于深度特征的工具(如 VideoCLIP、ConsecutiveChunker)进行语义场景检测,以保证每个检测出的场景块内部视觉语义连贯。

  • 关键帧抽取 & 字幕对齐
    在每个镜头段中抽取 1–2 帧最具代表性的关键帧(如背景最稳定、包含文本或人脸最多的帧),用 CLIP 做视觉嵌入;同时将该镜头对应时间段的音轨送 ASR 产生字幕,并与镜头时段做时间同步,使每个场景 Chunk 内都包含该场景的视觉、音频与文本三模态信息。

1.2.4 分块边界检测(Segmentation or Boundary Detection)

  • 多模态断点一致性
  1. 文本:可采用固定长度(如 N 字符、N 令牌)或滑动窗口+重叠(chunk_overlap)分块,也可做语义聚类分块(基于 Sentence Transformers Embedding+K-Means)。但固定/滑动方式常因文本自然换词、跨句引用而打断语义,嵌入聚类虽精确却开销巨大。
  2. 图像:以 OCR 文本坐标或语义分割/目标检测框边界作为断点,将一幅图像划分为若干图文融合的“区域 Chunk”。若是全屏图像(如海报),也可先做 Patch 划分,再根据视觉相似度做聚类。
  3. 音频:依据 VAD 标注的有声区间边界,再结合 ASR 中的句子或说话人切换时间点做进一步平滑分段,保证每个音频 Chunk 对应一段语义连贯的转写文本。
  4. 视频:以镜头/场景检测输出的时刻(scene boundary)为主,再以字幕的句子边界做微调,使每个视频 Chunk 同时包含完整视觉转场与相对连贯的语音/字幕信息。
  • 跨模态断点对齐规则
    最常用做法是以文本(字幕或 OCR 文本)为主导,将图像或视频中检测到的视觉断点与文本边界对齐:如某字幕段落跨越了两个镜头,则将该字幕划归至短片中出现字幕关键词累计最多的场景段,以保证检索时用户看到的文本与对应视觉帧是一致的。

1.2.5 Chunk 提取与构造(Chunk Extraction)

  • 多模态聚合
    将同一断点 ID 下的各模态内容——例如文本分块(带时间戳或页码)、对应的图像剪辑(带坐标)、音频片段(带时段)、视频镜头段(带时段及关键帧)——统一合并为一个多模态 Chunk,并赋予独立的 Chunk ID。这样,检索时只需匹配一个向量 ID,即可同时获取该块的四种模态数据,实现语义一致的跨模态查询和显示。

  • 元数据标注
    每个 Chunk 会携带丰富的元数据,包括:
    文本:文档来源 ID、页码、段落序号、句子序号、语言
    图像:文件路径、区域坐标 (x1, y1, x2, y2)、OCR 文本 ID
    音频:文件路径、时段 (start_s, end_s)、说话人 ID
    视频:文件路径、镜头编号、关键帧序号、字幕句号 ID

通过这些元数据,系统在检索后不仅能返回相关文本,还能准确定位到相应图像区域、音频时段与视频镜头。

1.2.6 向量化与存储(Embedding & Storage)

  • 多模态向量化策略
    文本嵌入:一般采用 Sentence Transformers(如 all-MiniLM-L6-v2)或 OpenAI Embedding API (text-embedding-3-small) 对每个文本分块做高维向量表示。
    图像嵌入:使用 CLIP(openai/clip-vit-base-patch32)对每个图像区域或关键帧做视觉嵌入,得到与文本向量同维或可映射对齐的视觉特征向量。
    音频嵌入:对音频片段采用 AudioCLIP、Wav2CLIP 或自训练的音频模型(如 YAMNet)提取特征向量;同时可将转写文本嵌入与音频嵌入拼接,得到跨模态融合向量。
    视频嵌入:对关键帧使用 CLIP 做视觉嵌入,并对对应音轨执行 ASR 后将其文本嵌入与视觉嵌入拼接;也可使用 VideoCLIP 等多模态视频模型直接输出统一向量。

  • 向量数据库存储结构

以 Milvus 为例,在存储多模态 Chunk 时通常会对每个 Chunk 维护一条记录,其中包括:


{
  "chunk_id": "UUID-12345",
  "text_embedding": [0.012, -0.103, ...],       // N 维向量
  "image_embedding": [0.224, 0.011, ...],       // M 维向量
  "audio_embedding": [0.345, -0.017, ...],      // K 维向量
  "video_embedding": [0.156, 0.092, ...],       // L 维向量
  "metadata": {
    "doc_id": "DOC-6789",
    "page_number": 12,
    "paragraph_id": 3,
    "image_coords": [x1, y1, x2, y2],
    "audio_interval": [start_s, end_s],
    "video_shot": 5,
    "language": "zh",
    "timestamp": "2025-05-20T14:35:00Z"
  }
}

在 Milvus 中,可以创建一个多向量 Collection(Multi-Vector Collection),支持同时为 text_embedding、image_embedding、audio_embedding 和 video_embedding 建立独立的索引(如 HNSW、IVF-PQ),并在查询时执行多向量近邻搜索。

若要对任意模态单独检索,也可只查询对应子向量索引,若要做跨模态检索(如“给定文本 Query,检索相关图像”),则先检索文本向量,再对返回的 top-K 样本提取其 image_embedding 进行视觉相似度排序。
维基百科

1.2.7 检索与生成(Retrieval & Generation)

  • 跨模态检索策略
    二阶段检索:第一阶段用文本 Query 做粗排(如倒排索引)快速筛选相关 Chunk ID;第二阶段对这些候选 Chunk 的多模态向量(如 text_embedding + image_embedding)做联合近邻搜索,通过加权或拼接方式计算跨模态相似度分数,最终返回 top-K 最匹配的 Chunk。
    模态对齐检索:若用户 Query 本身是多模态(如“显示这个描述对应的 X-ray 图像”),需先将 Query 的文本向量与图像向量分别生成,再对向量库做联合检索,返回同时满足文本与视觉相似度要求的 Chunk。

  • 上下文拼接与 LLM 生成
    将检索到的 top-K Chunk(按相似度降序)按照其元数据顺序拼接成“检索上下文”,并与用户原始 Query 一同传给 LLM 生成最终回答。若上下文过长,则采用滑动窗口或分批拼接(prioritized chunk/striped chunk)方式保证 LLM 的上下文窗口不被超出。

1.3 语义统一问题与解决方案

节点难点概述解决方案优点缺点
数据接入格式繁多、需去重与版本管理:文档、图像、音频、视频等混合来源,不同编码;实时上传与批量同步风险重复处理。1. 多源同步+消息队列:使用 Airflow、Prefect、Kafka 等拉取并统一入库;文件哈希去重。
2. 格式自动检测与路由:基于魔数或扩展名自动分发到对应预处理管道。
• 支持海量异构文件实时接入。
• 自动去重节省存储与计算。
• 系统需维护分布式调度与消息队列,架构复杂。
• 某些损坏或加密文件难以自动检测。
初始预处理编码不一致、各模态质量参差、转码耗时:OCR 模型对低质图影响大;音频采样率不统一;视频编码差异导致解码失败或帧率对齐问题。1. 统一编码与规范化:用 ftfychardet 处理文本编码,统一图像/音视频编码格式。
2. 并行转码与压缩优化:借助 FFmpeg、ImageMagick、Pillow 并行转码调整分辨率。
• 消除乱码、兼容下游模型。
• 批量化后减少后续处理时延。
• 并行转码需大量 CPU/GPU 资源,在集群资源有限时易成为瓶颈。
• 压缩图像/视频可能丢失细节,影响 OCR/视觉分割结果。
模态专属预处理OCR 准确率不足、图像纯视觉语义缺失、VAD/ASR 精度受噪声影响、镜头检测误判:文本多栏布局和表格影响 OCR;纯色背景图无文字;音频有背景噪声;视频场景快速切换。1. 文本—OCR+布局分析:Tesseract/EasyOCR 结合 PyMuPDF/LayoutLM 分离图文段落。
2. 图像—语义分割+目标检测:使用 U-Net/SAM 或 YOLO/Faster R-CNN 定位关键区域。
3. 音频—VAD+说话人分离+ASR:WebRTC VAD 去噪,pyannote 分离说话人,WhisperX 转写。
4. 视频—镜头检测+关键帧抽取+字幕对齐:PySceneDetect/OpenCV 检测场景,CLIP 抽帧,ASR 转写并时间对齐。
• 针对不同模态使用最优预处理方法,提升下游分块精准度。
• 合并视觉与文本信息段落,实现多模态语义重合。
• 各分支流水线需并行维护,开发与资源成本高。
• 依赖预训练模型(如 LayoutLM、SAM、WhisperX)时延明显,对硬件要求高。
分块边界检测跨模态断点匹配、语义连贯 vs. 计算开销、噪声误判:文本断点多样;图像区域无文本标志;音频噪声做错 VAD;视频场景检测误判快切。1. 固定/滑动窗口分块:对文本采用 N 令牌固定/滑动;对音视频按固定时长切片。
2. 语义嵌入+聚类分块:对文本/图像/音频/视频做嵌入后聚类。
3. 模态特定信号分块:文本按标点/段落;图像按 OCR 区域/分割框;音频按 VAD 有声段;视频按镜头检测+字幕对齐。
4. 延迟分块:先整块做多模态嵌入(CLIP/VideoCLIP),再在嵌入空间检测断点。
• 固定/滑动:实现简单,低延迟。
• 语义聚类:保证块内部主题一致,跨模态语义一致。
• 模态特定:最大化保留各模态语义特征。
• 延迟分块:全局上下文指导,减少局部错误。
• 固定/滑动:易切断语义,跨模态对齐弱。
• 聚类:计算开销巨大,需大规模嵌入。
• 模态特定:实现复杂,需要多流水线配合对齐。
• 延迟:需要先做全局嵌入,延迟高且资源消耗大。
Chunk 提取与构造多模态内容聚合复杂、元数据管理繁琐、Chunk 粒度决策难:如何将文本、图像、音频、视频片段对齐到同一 Chunk;如何为每个 Chunk 维护完整元数据;过大/过小粒度的平衡。1. 多模态聚合:将同一断点 ID 下的所有模态数据合并为一个逻辑 Chunk,附带统一 metadata。
2. 层次化累积分块:先底层分块(句子/帧/Patch),再按主题/场景层层合并。
• 多模态聚合:检索时一次返回所有相关模态,语义一致且可追溯。
• 层次化累积:支持多粒度检索,兼顾局部与全局语义。
• 聚合逻辑复杂,需单独设计对齐规则。
• 层级合并后易产生冗余或定位困难,需多轮调优。
向量化与存储多模态向量维度对齐、索引存储大规模向量开销:文本/图像/音频/视频各有不同嵌入维度;海量 Chunk 下索引构建与增量更新性能瓶颈;跨模态检索多向量融合策略。1. 统一多模态向量化:文本用 Sentence Transformers,图像用 CLIP,音频用 AudioCLIP,视频用 VideoCLIP,并拼接成统一向量。
2. 多向量索引存储(Milvus):对每个模态向量分别建索引,支持多向量检索。
3. 增量/实时更新:利用 Milvus 等支持动态增删的向量库,增量索引无需全量重建。
• 跨模态向量拼接后可直接做混合检索,简化检索逻辑。
• Milvus 等支持分片、并行索引,便于大规模部署。
• 增量更新减少重建开销。
• 各模态维度需通过降维/加权方式对齐,易丢失一部分信息。
• 向量库动态更新存在性能上限,需定期做离线重编。
• 多向量检索和融合需调参,权重难以量化。
检索与生成跨模态检索效率 vs. 准确度、上下文拼接细节:如何在海量向量中快速定位相关 Chunk;如何融合多模态分数重排序;如何将多个 Chunk 拼接给 LLM 而不超出上下文。1. 二阶段检索:先倒排索引做粗排(Elasticsearch、OpenSearch),再向量检索精排(FAISS、Milvus)。
2. 跨模态联合检索+重排序:Query 同时转文本与视觉向量,两阶段检索后做多模态得分融合。
3. 上下文滑动拼接:对 top-K Chunk 按相关度排序,若总长度超限则采用滑动窗口或分批拼接。
• 二阶段检索平衡速度与精度,倒排索引快速缩小检索空间。
• 跨模态融合满足复杂查询场景。
• 滑动拼接避免超限,提高生成质量。
• 维护双索引系统架构复杂,数据同步开销大。
• 跨模态得分融合需大量调优,不同模态权重难精确设定。
• 滑动拼接若拼接不当会漏掉重要上下文。

附录

本人github项目地址:https://github.com/oncecoo
欢迎关注!

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir=&#39;./data&#39;).load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值