mmseg使用过程中出现TypeError: __init__() got an unexpected keyword argument ‘in_channels‘ TypeError: __init__() got an unexpected keyword argument 'in_channels'
label数据(或自定义数据集)转imagenet(用于mmclassification) 理论上用于分类的图像一般都不需要用labelme来标注的,笔者是因为刚好手上有这么一组数据,所以就顺带处理了。labelme标注完的数据每张还包含了一个json文件,这个在分类任务中用不上。具体的mmclassification使用方法在我的另一篇文章里有,需要注意的是现在分类任务被集合在mmpretrain里了。用法也优点区别,不过也都是细微的修改,都还能用。
labelme标注数据转mask(用于mmsegmentation) labelme标注得到的数据是jpg(或者png)、json混合在一个文件夹里的。如果用于语义分割,通常需要将json数据转为mask图像。mmseg支持的数据集类型比较多,对应的也有自己的数据集结构。代码参考了https://github.com/TommyZihao/Label2Everything/tree/main/labelme2mask,这边需要修改的就是路径以及class_info。具体怎么使用mmseg训练自己的数据集,我另外一篇blog提到了。
ValueError: check_hostname requires server_hostname ValueError: check_hostname requires server_hostname 问题解决
pycharm中直接启用jupyter lab时遇到的问题 ModuleNotFoundError:No module named ‘jupyter_core‘ 直接pip install jupyter_core会发现自己肯定是有的。网上查了一些方法也不管用。后来重启一下这个环境就ok了。具体可以是退出pycharm再打开或者切换一下环境再换回来都可以。这个问题是我在pycharm中直接启用jupyter时遇到的。我都用了,反正都能安装。
安装mmdetection3d遇到的一些问题记录 ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: 'c:\\programdata\\anaconda3\\envs\\open-mmlab\\lib\\site-packages\\__pycache__\\typing_extensions.cpython-37.pyc'Consider using the `--user` option or check the permissions.
scipy.spatial.qhull.QhullError: QH7023 qhull option warning: unknown ‘Q‘ qhull option ‘Qn‘, skip to 制作LINEMOD数据集step6出现了QhullError问题
RuntimeError: Unable to find a valid cuDNN algorithm to run convolution RuntimeError: Unable to find a valid cuDNN algorithm to run convolution
【论文阅读】Pose from Shape: Deep Pose Estimation for Arbitrary 3D Objects 摘要大多数深度位姿估计方法都需要针对特定的对象实例或类别进行训练。在这项工作中,我们提出了一种完全通用的深度姿势估计方法,它不需要网络对相关类别进行训练,也不需要类别中的对象具有规范姿势。我们认为,这是设计机器人系统的关键一步,该系统可以对训练集外的目标进行预测,而不是属于预先定义的类别。我们的主要方法是用目标物体的3D形状表示来动态估计姿态。更准确地说,我们训练了一个卷积神经网络,它将测试图像和3D模型作为输入,输出输入图像中物体相对于3D模型的相对3D姿态,我们证明了我们的方法在标准数据集上(Pasc
关于函数装饰器的一些理解 在python中我们经常听到\看到一类函数A,在这类函数的定义声明(def)之前还有类似于@xxx的记号。对于这类函数A,我们称之为被修饰的函数,而对于 @中的xxx 我们称之为函数装饰器(function decorator)。(有些地方翻译为函数修饰器)这是我在其他博主的文章里看到的,比较形象,就借用一下吧。函数修饰器算是一个比较好用的技巧,但是容易被很多人忽视,有些教程里也都没有讲。其实也没有很难,它可以最大程度的实现对已有程序的利用,只需要改变函数的输入或者输出部分,就可以实现原来函数不具备的一些
mmdetect2d训练自己的数据集(二)—— 模型训练 前言近期在学习mmdetect,总体来说mmlab这个框架感觉上手难度还挺大的,自己也是结合b站各位up主(up主名称:我是土堆、OneShotLove、比飞鸟贵重的多_HKL)以及知乎mmlab官方边看边学,真的是保姆级教程,强烈推荐。但是大家为了防止以后忘记,记录一下,如果有不对的地方,欢迎大家批评指正。关于数据前期处理请参照上一篇博客:mmdetect2d训练自己的数据集(一)—— labelme数据处理一、...
TypeError: Argument ‘bb’ has incorrect type (expected numpy.ndarray, got list) 这个问题是在使用coco数据集用maskrcnn做目标检测时遇到的,主要原因是你的json文件里面的segmentation中的数据不符合要求,正常来说这里面是类似于[x,y,x,y,x,y…x,y]按顺序排列的点序列,并且这里面的点序列个数是偶数,同时点的个数至少要超过2个(4个最稳),也就是要构面。...
mmdetect2d训练自己的数据集(一)—— labelme数据处理 前言近期在学习mmdetect3d,刚好也在负责实验室一个项目里面的目标检测工作,所以就顺手使用mmdetect2d训练自己的数据集。但总体来说mmlab这个框架感觉上手难度还挺大的,自己也是结合b站各位up主(up主名称:我是土堆、OneShotLove、比飞鸟贵重的多_HKL)以及知乎mmlab官方边看边学,真的是保姆级教程,强烈推荐。但是大家为了防止以后忘记,记录一下,如果有不对的地方,欢迎大家批评指正。一、 数据集准备数据集标注使用的是labelme,关于labelme的使用教程网上有很多,也