遗传算法的收敛性分析

基本遗传算法可描述为一个齐次Markov链P= {P(t),t≥0},因为基本遗传算法的选择、交叉和变异操作都是独立随机进行的,新群体仅与其父代群体及遗传操作算子有关,而与其父代群体之前的各代群体无关,即群体无后效性,并且各代群体之间的转换概率与时间的起点无关。

[定理1]基本遗传算法收敛于最优解的概率小于1。
对于这种收敛于最优解的概率小于1的基本遗传算法,其应用可靠性就值得怀疑。从理论上来说,仍希望遗传算法能够保证收敛于最优解,这就需要对基本遗传算法进行改进,如使用保留最佳个体的策略就可达到这个要求。

[定理2]使用保留最佳个体策略的遗传算法能收敛于最优解的概率为1。
定理2说明了这种使用保留最佳个体策略的遗传算法总能够以概率1搜索到最优解。这个结论除了理论上具有重要意义之外,在实际应用中也为最优解的搜索过程提供了一种保证。

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论

打赏作者

平平无奇的小女子~

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值