自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(81)
  • 资源 (1)
  • 收藏
  • 关注

原创 Google colab 基本使用方法

1、先翻墙,才能使用google2、搜索Google Drive3、登录进Google drive4、添加colab,单击新建,更多关联应用绑定 Google colab5、进入colab ,绑定Google drive 每次新建一个colab 文档都需要 。colab 会自动保存至Google Drive虚拟机一般在10个小时左右,如果没有工作,可能虚拟机会收回资源(有一定的时间,大概半个小时,具体不清楚)6、获取文件路径:一般通过右键 就可以获取路径,方便文.

2020-07-08 11:09:41 8149 2

原创 随机过程指数分布特征函数求解细节详解及部分问题解释

以下是指数分布的特征函数推导过程:但推导过程中的积分存在问题中间涉及到了复数积分关键需要进行欧拉变换:使用了欧拉公式的特征函数,就可以进一步进行积分求解。附上1、一个B站上的欧拉讲解视频:「珂学原理」No. 27「欧拉公式在干什么?」https://www.bilibili.com/video/BV1Gx411j7pG?from=search&seid=11499138553503046382、常见概率分布的特征函数推导https://blog.c

2020-07-04 09:22:18 8000

原创 抽象向量组与矩阵具体向量组之间的关系简洁证明

(1)抽象向量与其坐标建立一一对应关系;抽象向量组与矩阵建立一一对应关系;(2)定理:抽象向量组的相关性与矩阵表达的具体的向量组的相关性完全一致即抽象向量组无关等价于具体向量组无关抽象向量组相关等价于具体向量组相关一下分两种情况证明:如果B无关那么BX=0只有零界那么aAX=0也只有0解(aA)X=0r(aA)=nr(aA)<=r(a)r(...

2020-04-25 11:22:37 1146

原创 阿里云+轻量级服务器+docker+wordpress

阿里云+轻量级服务器+docker+wordpress

2023-06-15 21:24:47 236

原创 Docker设置阿里镜像加速器仍然下载很慢,增加多个镜像源进行提速

【代码】Docker设置阿里镜像加速器仍然下载很慢,增加多个镜像源进行提速。

2023-06-11 09:25:30 1409

原创 单纯形法与对偶单纯形法的通俗理解

cigma<0,a>0 min cigma/(a) 决定出基变量1对偶单纯形法 意思是看c就是所有货物的价值,去看一眼这些货物单价组合售卖的价值,这些价值肯定要都大于0,而且,组成这个c的系数也应该是都是正的,c最小证明对min,贡献已经很大了,对于那些大的需要进一步优化,所以选择c最小的离开。c最小的中找到,影响c下降最快的因素,让其作为解进一步影响其他组合,尽快降低其他的c,那么需要选择进去,对偶的检验系数均<=0,那么就要看看到底是哪个因素造成了...

2022-12-31 08:36:46 3072 2

原创 yarn 安装 (idea,vscode)

yarn 安装 (idea,vscode)

2022-12-15 09:38:25 914

原创 阿里云服务器配置jupyter notebook

1、安装jupytersudo pip3 install jupyter notebook2、设置jupter的密码jupyter notebook password3、设置安全组4、设置访问ip,以及用户权限jupyter notebook --ip 0.0.0.0 --no-browser --allow-root5、启动 jupyterjupy......

2022-07-10 13:55:38 671

原创 百度测开校招面试总结(没上岸)

1、一面:问了大段项目 应该是想让我过。面试官还是很好的。2、二面:还没有到邮件上的面试时间。面试官一直等,由于手机静音,没有接到他们的电话。面试官有点(火)两道题一道文件读写,一道算法题。算法题想复杂了,没有写出来,结束的时候知道怎么写的。除了两道题。还有下面的内容。问了装饰器,手撕装饰器。(概念很模糊了,只是用过,确实写不对)手撕字节流分块(以前做过,也是边查边做。让我手撕,很无语)除了菜,我觉得问的也太多了。直接说不给你三面,你有什么问题要问的吗?诶!!!...

2021-10-23 17:44:15 288

原创 浏览器被毒霸劫持

参看:谷歌首页被毒霸劫持解决办法_小兵的博客-CSDN博客一觉醒来,浏览器首页就被篡改了,这也太恶心了。卸载驱动精灵,回想这几天弹出的各种新闻、广告。想想都恶心。真是无良软件。...

2021-09-23 07:06:56 260

原创 excel 绘图

很久没有用excel仔细绘图了,遇到了做标轴标签在中间的情况,顺便mark 一下作图的过程。插入图表,并右键选择数据设置坐标轴标签的位置,放置在下侧,右键 设置做标轴格式,与做标轴距离一项设置为低之后还可以根据需要设置标签的对齐角度最后还可以根据自己的需要增加一些图例或者其他要素...

2021-09-16 15:47:01 1753

原创 python list转置

x=['5,3,4,2,3','1,5,2,2,3','3,2,5,2,1','1,4,2,5,2','1,2,3,1,5']y=[[int(t) for t in i.split(',')] for i in x]list(map(list,zip(*y)))https://www.cnblogs.com/kenny-feng/p/11368477.html* 就是把迭代对象拆成 元组

2021-09-06 16:54:59 1343

原创 word 插入公式附加右侧编号方法

主要添加编号的方法就是在公式后面,添加#(编号),输入光标在公式的最后,然后回车。效果如下:需要注意的有两点:1、必须要保证#不属于公式内部 (如果不清楚如何保证#键属不属于公式,或者回车后没有出现效果,可以按照以下步骤)1)先输入上述公式 a=b+c#(1) ,然后回车2)得到公式和标号后,再将 a=b+c替换成自己的公式,既可以保留编号,也可以使用自己的公式。2、光标放置在末尾才可以回车...

2021-08-27 22:23:07 53415 2

原创 pandas isnull dropna使用,返回dropna,isnull的空值

dataframe 结构features = features.dropna(axis=0) 去除空行为了了解dropna删除的数据,做如下的判断。按行检查,返回出现NaN的列features.isnull().any(axis = 0)取出目标空值数据:这里需要注意的是切片所取的维度features.iloc[:,features.isnull().any(axis = 0).values==True]按列检查,返回出现NaN的行f...

2021-08-18 21:24:43 319

原创 pandas.datetime 将要移除

FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead.解决方法 安装 datetime包pip install datetimedatetime 函数调用示例对比#pandas中调用datetimepd.datetime.strptime('2019-01-01 00

2021-08-18 20:15:07 4545

原创 pip 升级误删pip ,添加环境变量仍不能解决

参考:(20条消息) python3 缺少PIP解决办法_Huo的藏经阁的博客-CSDN博客使用下面的命令安装pippython -m ensurepip --default-pip

2021-08-18 19:37:47 257

原创 测试学习(phpstorm phpunit配置,测试用例demo编写 ) 报错:Error : Call to undefined function assertEquals()

Error : Call to undefined function assertEquals()找了一圈发现没有人遇到我这个问题,后来看了一下提示,应该是phpstorm 里面的phpunit 方法改变了使用方式。根据提示换成现有的方法来使用。phpstorm 可能还是没有vscode好用吧,看的教程是vscode的第一个测试case:<?phpuse PHPUnit\Framework\TestCase;use PHPUnit\Framework\assertEq...

2021-08-10 17:00:54 357

原创 查询班级第二名成绩

数据表如下:有并列分组查询结果:select *from student t1where t1.score=(select t2.scorefrom student t2where t1.class=t2.classorder by t2.score desclimit 1,1)查询结果:(注意查询结果应该是依据 t2的分数排序)无并列分组查询结果:添加rank 排名,作为排序标识select * from (select * ,r...

2021-08-09 11:12:41 864

原创 Navicat Prenium连接MySQL 1521错误解决办法

Navcat连接Mysql报错1521 - _一直在努力 - 博客园 (cnblogs.com)这个报错按照上面参考的文章的第二种方法进行,亲测有效。ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY '123456'; #修改加密规则 ALTER USER 'root'@'localhost' IDENTIFIED BY '123456' PASSWORD EXPIRE NEVER; #更新用户的密码F

2021-08-07 17:18:59 883

原创 cmd 查询占用进程并杀死进程,处理拒绝服务

一、cmd 查询 占用进程 并杀死进程参考:用CMD杀死进程 - wait_for_you - 博客园 (cnblogs.com)1、netstat -ano | findstr="3306"2、taskkill /pid 8828 -f8828为进程号,-f 为强制终止进程如果终止进程失败比如:出现了 拒绝服务cmd 命令行以管理员身份重新打开。二、还有在这里 简要记录一下 7-7-7750权限,wrxr=4,w=2,x=1rwxr-x---文件所有者 ...

2021-08-07 17:06:44 760

原创 python 根据条件删除list中的元素

signal=torch.rand(1,277,100)norm=signal[:,1,:].reshape(-1)dic={3:[-100,100],2:[1900,2000]}res= [[10,20,3],[9,21,3],[4,8,2],[4,9,2],[4,9,2]]new_res=res.copy()for res_s ,res_i in enumerate(res): norm_error = norm[res_i[0]]-norm[res_i[1]] min_ma.

2021-07-01 10:31:34 891

原创 torch tensor 条件选取操作

import torchx=torch.rand(2,2)print(x)print(x[(x[:,1]<0)|(x[:,0]>0)])print(x[(x[:,1]<0)&(x[:,0]>0)])运行结果如下

2021-06-29 17:15:21 1545

原创 “floor“ “_vml_cpu“ not implemented for ‘Long‘

target=torch.tensor([[ [39, 4, 1], [57, 80, 1], [80, 100,2], [55, 60, 3]]])print(target.dtype)'''tensor内部全是正数默认是torch.int64 为long 长整型floor 只能对浮点型数据进行操作,可以进行如下操作避免。target=target.float().

2021-06-16 10:32:18 1537

原创 根据torch.max得到的索引, 获取原数据中的完整信息 (tensor 张量的选取)

图像输出中torch.manual_seed(1)x=torch.rand(5,3,1,512,11)'''从 11 的维度中取出 '''_,location = torch.max(x[...,3],dim=-1)'''x[...,3] shape torch.Size([5, 3, 1, 512]) ''''''目标是 找出 512 最大的位置,并在原来的prediction中取出对应维度'''print(x.shape)print(location.shape)torch.

2021-06-09 21:10:17 661

原创 tqdm 设置蓝色进度条,并测试

from tqdm import tqdmfrom colorama import Foreimport timepbar=tqdm(range(1000),bar_format='{l_bar}%s{bar}%s{r_bar}' % (Fore.BLUE, Fore.RESET))for i in pbar : time.sleep(0.001) pbar.set_description("nihao %d"%i)

2021-06-07 15:53:58 2116

原创 visdom安装使用(windows)

控制台(cmd)pip install visdom控制台 (启动visdom)python -m visdom.server启动后浏览器输入:可视化默认的是本地服务器 8097端口http://localhost:8097/操作图示测试代码使用:from visdom import Visdomimport timeviz = Visdom()global_step=0for k in range(1000):time.sleep(10...

2021-06-07 14:35:02 520 1

原创 python 读取h5文件示例

import h5pyimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt # plt 用于显示图片import matplotlib.image as mpimg # mpimg 用于读取图片import numpy as npf=h5py.File("/content/sample_data/100091.png.h5","r+")print(f.values)for key in f.keys(.

2021-06-04 17:40:11 7209 2

原创 unsqueeze,squeeze,repeat,expand,expand_as应用示例及其详细说明

import torchbox_a=torch.tensor([[1,2,3],[1,2,3]])print(box_a[:, 2:].squeeze(0).shape)print(box_a[:, 2:].shape)

2021-05-31 09:38:09 1058

原创 笔试

引自:Python 按键(key)或值(value)对字典进行排序 | 菜鸟教程 (runoob.com)lis = [{ "name" : "Taobao", "age" : 100},{ "name" : "Runoob", "age" : 7 },{ "name" : "Google", "age" : 100 },{ "name" : "Wiki" , "age" : 200 }]# 通过 age 升序排序print ("列表通过 age 升序排序: ")print (sort.

2021-05-20 08:58:09 89

原创 torch.where 防止空操作,避免loss 计算出现nan

import torchy=torch.tensor([1,0])x=torch.tensor([[1,2,3],[1,23,4]])print(x[torch.where(y>10)])diff=x[torch.where(x>100)]''' 通过求和 无法解决高维度的空张量 tensor([], size=(0, 3), dtype=torch.int64)'''y=sum(torch.tensor([[[]]]))print(y)''' 可以先取出张量的数据,再通过.

2021-04-22 10:14:56 802

原创 sorted 多条件排序

参考:1、https://www.cnblogs.com/bymo/p/8335502.html2、https://blog.csdn.net/qq_36575363/article/details/108930409n=int(input())dic={}for index in range(n): if 'append'in input(): temp=[int(i) for i in input().split()[1:.

2021-04-19 16:14:12 280

原创 torch搭建网络,模块是否可以重复调用?

参考:https://blog.csdn.net/rocking_struggling/article/details/108357089class MyNetk(t.nn.Module): def __init__(self): super(MyNetk,self).__init__() # print("卷积网络") self.conv1 = nn.Sequential( nn.Conv2d( i.

2021-04-11 21:09:58 1310 3

原创 使用多分类交叉熵损失 。报错:RuntimeError: expected scalar type Long but found Float

import torchx=torch.Tensor([[0.5000, 0.5003, 0.5011, 0.5003, 0.5000, 0.5006], [0.5000, 0.5003, 0.5010, 0.5003, 0.5000, 0.5006], [0.5000, 0.5003, 0.5011, 0.5003, 0.5000, 0.5006], [0.5000, 0.5003, 0.5010, 0.5004, 0.5000, 0.5005],...

2021-03-13 11:39:08 7871

原创 关于修改loss函数,以及loss为nan的一些情况

1、代码中使用到了torch.sqrt ,如果sqrt的输入参数为负数,那么也会导致计算的结果为nan,最终导致loss函数出现nan。2、输入参数过小torch.sqrt就算结果趋近于0,遇到有log的对数函数计算时候,会出现无穷大的情况。3、还有就是参数过小,趋近于0,反向传播时候作为分母,造成反向计算的节点为无穷大。4、做归一化操作时,同组数据为0,造成分母为0(最大值-最小值)。第一种情况,个人采用的解决方法是,将网络的输出使用relu函数将结果取正。后面三种情况,总结来说.

2021-03-13 10:19:12 794

原创 relu 的缺点理解

援引:https://blog.csdn.net/u011754972/article/details/81584719leakyrelu的理解:https://blog.csdn.net/tyhj_sf/article/details/79932893其实relu不发挥作用主要是在relu的输入为负数的情况下,relu前向传播都是0,反向传播也是0,。...

2021-01-29 00:18:24 563

原创 pyspark 快速安装

1、先安装incremental (建议将工具包下载下来,然后在本地安装 可用镜像源地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/)2、安装pyspark 试了一下豆瓣有这个镜像源pip install incremental==17.5.0pip install pyspark -i http://pypi.douban.com/simple --trusted-host pypi.douban.com...

2021-01-16 20:47:05 738

原创 谷歌浏览器 图片不显示问题 Mixed Content: The page at ‘<URL>‘ was loaded over HTTPS

谷歌浏览器图片显示问题:具体原因参考:https://blog.csdn.net/weixin_38634125/article/details/108413427(这是因为谷歌浏览器对于https链接会自动屏蔽不安全的http链接,就是所谓的Mixed Content。)谷歌浏览器设置中搜索 内容设置——>网站设置——>不安全内容——>添加允许访问http协议内容的网址...

2021-01-10 22:59:18 2534

原创 jupyter 内图片显示

image.show() 在jupyter运行后的结果不会显示出来。需要调用display 进行图片显示from PIL import Imagekk=np.loadtxt('/content/sample_data/2.txt')image_array=kk[0,-10000:].reshape(100,100)*255im=Image.fromarray(image_array)im = im.convert('L') # im.show()im.save('/conte..

2021-01-07 11:13:15 1805

原创 python 处理 json 格式。(数据的存入和读取)

import jsondic={}dic.setdefault(1, [])dic[1].extend([1,2,2])dic.setdefault(2, [])dic[2].extend([1,2,2])print(dic)# 将字典转换成json字符串dict_json=dicwith open("c.json", 'w') as f: f.write(json.dumps(dict_json))# 将json字符串转换成dic字典对象dic = json.load(op.

2020-12-30 19:52:21 172

原创 python 字典 与 json 之间的存取对应

import json# 将字典转换成json字符串dict_json={1:5,2:6}with open("a.json", 'w') as f: f.write(json.dumps(dict_json)) # 将json字符串转换成dic字典对象dr_data = json.load(open("a.json"))print(dr_data)

2020-12-17 16:15:34 173

U盘修复工具.zip

Kingston Format Utility是金士顿旗下的一款U盘修复工具,可完美解决U盘打不开、U盘写保护等问题,恢复金士顿U盘速度慢也可通过Kingston Format Utility修复,注意,使用本款金士顿U盘修复工具之前注意文件备份。

2019-11-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除