转自:http://blog.csdn.net/hackbuteer1/article/details/7390093
听同学百度二面中,不准用四则运算操作符来实现四则运算。一想就想到了计算机组成原理上学过的。位运算的思想可以应用到很多地方,这里简单的总结一下用位运算来实现整数的四则运算。
加法运算:
- int AddWithoutArithmetic(int num1,int num2)
- {
- if(num2==0) return num1;//没有进位的时候完成运算
- int sum,carry;
- sum=num1^num2;//完成第一步没有进位的加法运算
- carry=(num1&num2)<<1;//完成第二步进位并且左移运算
- return AddWithoutArithmetic(sum,carry);//进行递归,相加
- }
简化一下:
- int Add(int a,int b)
- {
- return b ? Add(a^b,(a&b)<<1) : a;
- /*if(b)
- return Add(a^b,(a&b)<<1);
- else
- return a;*/
- }
上面的思路就是先不计进位相加,然后再与进位相加,随着递归,进位会变为0,递归结束。
非递归的版本如下:
- int Add(int a, int b)
- {
- int ans;
- while(b)
- { //直到没有进位
- ans = a^b; //不带进位加法
- b = ((a&b)<<1); //进位
- a = ans;
- }
- return a;
- }
减法运算:
- //这个和加法一样了,首先取减数的补码,然后相加。
- int negtive(int a) //取补码
- {
- return Add(~a, 1);
- }
- int Sub(int a, int b)
- {
- return Add(a, negtive(b));
- }
正数乘法运算:
- //正数乘法运算
- int Pos_Multiply(int a,int b)
- {
- int ans = 0;
- while(b)
- {
- if(b&1)
- ans = Add(ans, a);
- a = (a<<1);
- b = (b>>1);
- }
- return ans;
- }
整数除法(正整数)
- //除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。
- int Pos_Div(int x,int y)
- {
- int ans=0;
- for(int i=31;i>=0;i--)
- {
- //比较x是否大于y的(1<<i)次方,避免将x与(y<<i)比较,因为不确定y的(1<<i)次方是否溢出
- if((x>>i)>=y)
- {
- ans+=(1<<i);
- x-=(y<<i);
- }
- }
- return ans;
- }
完整的实现:
- // 加减乘除位运算
- // 程序中实现了比较大小、加减乘除运算。所有运算都用位操作实现
- // 在实现除法运算时,用了从高位到低位的减法
- // 具体如下,算法也比较简单,所以没有作注释
- #include<iostream>
- #include<cstdio>
- using namespace std;
- int Add(int a, int b)
- {
- int ans;
- while(b)
- { //直到没有进位
- ans = a^b; //不带进位加法
- b = ((a&b)<<1); //进位
- a = ans;
- }
- return a;
- }
- //这个和加法一样了,首先取减数的补码,然后相加。
- int negtive(int a) //取补码
- {
- return Add(~a, 1);
- }
- int Sub(int a, int b)
- {
- return Add(a, negtive(b));
- }
- // 判断正负
- int ispos( int a )
- { //正
- return (a&0xFFFF) && !(a&0x8000);
- }
- int isneg( int a )
- { //负
- return a&0x8000;
- }
- int iszero( int a )
- { //0
- return !(a&0xFFFF);
- }
- //正数乘法运算
- int Pos_Multiply(int a,int b)
- {
- int ans = 0;
- while(b)
- {
- if(b&1)
- ans = Add(ans, a);
- a = (a<<1);
- b = (b>>1);
- }
- return ans;
- }
- //乘法运算
- int Multiply(int a,int b)
- {
- if( iszero(a) || iszero(b) )
- return 0;
- if( ispos(a) && ispos(b) )
- return Pos_Multiply(a, b);
- if( isneg(a) )
- {
- if( isneg(b) )
- {
- return Pos_Multiply( negtive(a), negtive(b) );
- }
- return negtive( Pos_Multiply( negtive(a), b ) );
- }
- return negtive( Pos_Multiply(a, negtive(b)) );
- }
- //除法就是由乘法的过程逆推,依次减掉(如果x够减的)y^(2^31),y^(2^30),...y^8,y^4,y^2,y^1。减掉相应数量的y就在结果加上相应的数量。
- int Pos_Div(int x,int y)
- {
- int ans=0;
- for(int i=31;i>=0;i--)
- {
- //比较x是否大于y的(1<<i)次方,避免将x与(y<<i)比较,因为不确定y的(1<<i)次方是否溢出
- if((x>>i)>=y)
- {
- ans+=(1<<i);
- x-=(y<<i);
- }
- }
- return ans;
- }
- //除法运算
- int MyDiv( int a, int b )
- {
- if( iszero(b) )
- {
- cout << "Error" << endl;
- exit(1);
- }
- if( iszero(a) )
- return 0;
- if( ispos(a) )
- {
- if( ispos(b) )
- return Pos_Div(a, b);
- return negtive( Pos_Div( a, negtive(b)) );
- }
- if( ispos(b) )
- return negtive( Pos_Div( negtive(a), b ) );
- return Pos_Div( negtive(a), negtive(b) );
- }
- // 比较两个正数的大小(非负也可)
- int isbig_pos( int a, int b )
- { //a>b>0
- int c = 1;
- b = (a^b);
- if( iszero(b) )
- return 0;
- while( b >>= 1 )
- {
- c <<= 1;
- }
- return (c&a);
- }
- // 比较两个数的大小
- int isbig( int a, int b )
- { //a>b
- if( isneg(a) )
- {
- if( isneg(b) )
- {
- return isbig_pos( negtive(b), negtive(a) );
- }
- return 0;
- }
- if( isneg(b) )
- return 1;
- return isbig_pos(a, b);
- }