干货|可视化设计:地图四部曲之地图热力+散点

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/openfea/article/details/54016088

元旦刚过,新一波的冷空气又马上来到,北方的童鞋们有市内暖气可以取暖,但是南方的童鞋们却冻得不要不要的,加了秋衣秋裤也还是欲罢不能,这不由得让身处南方的我们怀念起夏天的温度。

那么在今年的新年季,全国各个地方的气温是怎样,又是哪些城市最“热情”呢?继上期OpenFEA的地图散点之后,本期带来地图散点的升级版——地图热力+散点,将为大家揭晓答案。

一、什么地图热力+散点

地图热力+散点,顾名思义,就是地图热力和地图散点二者的结合,可同时展现热力数据和散点信息,做到在热力的基础上突出散点,散点的特色下显示不同的热力背景。常被用于同时展示点和面的数据信息。

二、数据准备

从百度上下载中国12月天气数据和坐标数据,分别保存为weather.csv和minerals.csv。

在浏览器中输入OpenFEA官网地址(http://www.openfea.cn或http://www.open-fea.cn),在下载专区中找到在线试用环境:http://60.191.16.186:8050/fea/,进入OpenFEA界面。

点击“”,打开装载数据窗口,选择装载类型为CSV并点击“”,将weather.csv和minerals.csv上传,然后装载到OpenFEA中。


图1  加载12月天气数据

图2  加载坐标数据

加载后的数据如下图所示:

图3  天气数据


图4  坐标数据

地图热力+散点由地图热力和地图散点两部分数据组成,必须满足二者的数据格式要求:

可以看出以上数据尚未满足地图热力+散点的绘制要求,需要先对数据进行处理。

三、可视化分析及设计过程

1、我们先对天气数据weather,按照省份进行分组,然后求平均高温的平均 值,将结果保存为新的DF表weather1。

图1  分组配置  

图2  分组后数据

2、对weather1进行重置索引。

图1  重置索引配置 


图2  配置后的数据

3、修改省份的字段名为china。

4、将weather1数据保存到ssdb0数据库中,并命名为weather。

5、我们需要把天气数据weather和坐标数据minerals整合在一起,这里我们选择关联表的操作,按照城市进行关联,结果数据保存为weather2。

图1  选择关联表的操作 

图2  关联表的配置

图3  配置后的数据

6、选取有用的数据列。

图1  选取数据列 

图2  配置后的数据

7、分别将城市和最高温度两个字段名,重命名为china和temperature。


图1  重命名为china


图2  重命名为temperature

8、过滤出最高温度大于等于25摄氏度的城市。


图1  过滤配置 

图2  配置后的数据

9、将temperature字段名修改回最高温度。

10、将weather2数据保存到ssdb0数据库中,并命名为weather_sd。

11、可视化设计

在可视化设计静态面板、动态面板、多屏交互等构建页面,只需输入之前保存的地图热力数据的Key值weather,并选择绘图的图表类型为地图热力+散点,即可绘制出所需要的中国地图热力+散点。


图1  绘图配置


图2  绘图后效果

至此,“地图四部曲”就告一段落了,请各位朋友继续关注我们其它图形样式的可视化设计真经!

 

往期精彩文章:

干货 | 可视化设计:地图四部曲之迁徙图

干货 | 可视化设计:地图四部曲之地图热力

干货|可视化设计:地图四部曲之地图散点

展开阅读全文

没有更多推荐了,返回首页