斯巴克概述 Spark Overview
阿帕奇斯巴克是一个快速的通用集群计算系统。它提供了一套高级应用开发接口,有Java、Scala、Python和R语言版,以及一个优化引擎支持通用执行图谱。它也提供了一组丰富的高级工具包括斯巴克 SQL 用于执行SQL和结构化数据处理。 MLib 用于机器学习,GraphX 用于图处理,以及 斯巴克流。
Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.
Downloading
Get Spark from the downloads page of the project website. This documentation is for Spark version 2.3.0. Spark uses Hadoop’s client libraries for HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop free” binary and run Spark with any Hadoop version by augmenting Spark’s classpath. Scala and Java users can include Spark in their projects using its Maven coordinates and in the future Python users can also install Spark from PyPI.
If you’d like to build Spark from source, visit Building Spark.
Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS). It’s easy to run locally on one machine — all you need is to have java
installed on your system PATH
, or the JAVA_HOME
environment variable pointing to a Java installation.
Spark runs on Java 8+, Python 2.7+/3.4+ and R 3.1+. For the Scala API, Spark 2.3.0 uses Scala 2.11. You will need to use a compatible Scala version (2.11.x).
Note that support for Java 7, Python 2.6 and old Hadoop versions before 2.6.5 were removed as of Spark 2.2.0. Support for Scala 2.10 was removed as of 2.3.0.
Running the Examples and Shell
Spark comes with several sample programs. Scala, Java, Python and R examples are in the examples/src/main
directory. To run one of the Java or Scala sample programs, use bin/run-example <class> [params]
in the top-level Spark directory. (Behind the scenes, this invokes the more general spark-submit
script for launching applications). For example,
./bin/run-example SparkPi 10
You can also run Spark interactively through a modified version of the Scala shell. This is a great way to learn the framework.
./bin/spark-shell --master local[2]
The --master
option specifies the master URL for a distributed cluster, or local
to run locally with one thread, or local[N]
to run locally with N threads. You should start by using local
for testing. For a full list of options, run Spark shell with the --help
option.
Spark also provides a Python API. To run Spark interactively in a Python interpreter, use bin/pyspark
:
./bin/pyspark --master local[2]
Example applications are also provided in Python. For example,
./bin/spark-submit examples/src/main/python/pi.py 10
Spark also provides an experimental R API since 1.4 (only DataFrames APIs included). To run Spark interactively in a R interpreter, use bin/sparkR
:
./bin/sparkR --master local[2]
Example applications are also provided in R. For example,
./bin/spark-submit examples/src/main/r/dataframe.R
Launching on a Cluster
The Spark cluster mode overview explains the key concepts in running on a cluster. Spark can run both by itself, or over several existing cluster managers. It currently provides several options for deployment:
- Standalone Deploy Mode: simplest way to deploy Spark on a private cluster
- Apache Mesos
- Hadoop YARN
- Kubernetes
Where to Go from Here
Programming Guides:
- Quick Start: a quick introduction to the Spark API; start here!
- RDD Programming Guide: overview of Spark basics - RDDs (core but old API), accumulators, and broadcast variables
- Spark SQL, Datasets, and DataFrames: processing structured data with relational queries (newer API than RDDs)
- Structured Streaming: processing structured data streams with relation queries (using Datasets and DataFrames, newer API than DStreams)
- Spark Streaming: processing data streams using DStreams (old API)
- MLlib: applying machine learning algorithms
- GraphX: processing graphs
API Docs:
- Spark Scala API (Scaladoc)
- Spark Java API (Javadoc)
- Spark Python API (Sphinx)
- Spark R API (Roxygen2)
- Spark SQL, Built-in Functions (MkDocs)
Deployment Guides:
- Cluster Overview: overview of concepts and components when running on a cluster
- Submitting Applications: packaging and deploying applications
- Deployment modes:
- Amazon EC2: scripts that let you launch a cluster on EC2 in about 5 minutes
- Standalone Deploy Mode: launch a standalone cluster quickly without a third-party cluster manager
- Mesos: deploy a private cluster using Apache Mesos
- YARN: deploy Spark on top of Hadoop NextGen (YARN)
- Kubernetes: deploy Spark on top of Kubernetes
Other Documents:
- Configuration: customize Spark via its configuration system
- Monitoring: track the behavior of your applications
- Tuning Guide: best practices to optimize performance and memory use
- Job Scheduling: scheduling resources across and within Spark applications
- Security: Spark security support
- Hardware Provisioning: recommendations for cluster hardware
- Integration with other storage systems:
- Building Spark: build Spark using the Maven system
- Contributing to Spark
- Third Party Projects: related third party Spark projects
External Resources:
- Spark Homepage
- Spark Community resources, including local meetups
- StackOverflow tag
apache-spark
- Mailing Lists: ask questions about Spark here
- AMP Camps: a series of training camps at UC Berkeley that featured talks and exercises about Spark, Spark Streaming, Mesos, and more. Videos, slides and exercises are available online for free.
- Code Examples: more are also available in the
examples
subfolder of Spark (Scala, Java, Python, R)