斯巴克概述(Spark Overview)

Apache斯巴克是一个快速且通用的集群计算系统,提供了Java、Scala、Python和R等高级应用开发接口,并支持多种执行图谱。斯巴克包含SQL处理、机器学习、图处理及流处理等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


斯巴克概述 Spark Overview

阿帕奇斯巴克是一个快速的通用集群计算系统。它提供了一套高级应用开发接口,有Java、Scala、Python和R语言版,以及一个优化引擎支持通用执行图谱。它也提供了一组丰富的高级工具包括斯巴克 SQL 用于执行SQL和结构化数据处理。 MLib 用于机器学习,GraphX 用于图处理,以及 斯巴克流。

Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming.

Downloading

Get Spark from the downloads page of the project website. This documentation is for Spark version 2.3.0. Spark uses Hadoop’s client libraries for HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop free” binary and run Spark with any Hadoop version by augmenting Spark’s classpath. Scala and Java users can include Spark in their projects using its Maven coordinates and in the future Python users can also install Spark from PyPI.

If you’d like to build Spark from source, visit Building Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS). It’s easy to run locally on one machine — all you need is to have javainstalled on your system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 8+, Python 2.7+/3.4+ and R 3.1+. For the Scala API, Spark 2.3.0 uses Scala 2.11. You will need to use a compatible Scala version (2.11.x).

Note that support for Java 7, Python 2.6 and old Hadoop versions before 2.6.5 were removed as of Spark 2.2.0. Support for Scala 2.10 was removed as of 2.3.0.

Running the Examples and Shell

Spark comes with several sample programs. Scala, Java, Python and R examples are in the examples/src/main directory. To run one of the Java or Scala sample programs, use bin/run-example <class> [params] in the top-level Spark directory. (Behind the scenes, this invokes the more general spark-submit script for launching applications). For example,

./bin/run-example SparkPi 10

You can also run Spark interactively through a modified version of the Scala shell. This is a great way to learn the framework.

./bin/spark-shell --master local[2]

The --master option specifies the master URL for a distributed cluster, or local to run locally with one thread, or local[N] to run locally with N threads. You should start by using local for testing. For a full list of options, run Spark shell with the --help option.

Spark also provides a Python API. To run Spark interactively in a Python interpreter, use bin/pyspark:

./bin/pyspark --master local[2]

Example applications are also provided in Python. For example,

./bin/spark-submit examples/src/main/python/pi.py 10

Spark also provides an experimental R API since 1.4 (only DataFrames APIs included). To run Spark interactively in a R interpreter, use bin/sparkR:

./bin/sparkR --master local[2]

Example applications are also provided in R. For example,

./bin/spark-submit examples/src/main/r/dataframe.R

Launching on a Cluster

The Spark cluster mode overview explains the key concepts in running on a cluster. Spark can run both by itself, or over several existing cluster managers. It currently provides several options for deployment:

Where to Go from Here

Programming Guides:

API Docs:

Deployment Guides:

Other Documents:

External Resources:





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值