谨以此题,献给中秋夜还在默默刷题的孩纸们。。
题目大意:给n个点,m个关系(a,b),表示点a和点b相邻。每个点最多4个相邻点。现在如果消灭某个点,就可以同时消灭与之相邻的点。现在问最少要消灭几个点,能使每个点都至少被消灭一次。
题目分析:最小点支配集的求解。NP难问题。好在数据规模不大,搜索可以解决。不过要用dancing links+A*优化。
重复覆盖和精确覆盖的区别仅仅是选中一列后只删除这一列即可,不用像精确覆盖那样先删掉所有覆盖这列的行,再删除这些行能覆盖的列保证每列只覆盖一次。
另外要加一个启发函数剪枝。关于这个剪枝函数,就是估计在当前局面下,最少还要几行才能覆盖所有剩下的列。因此这是一个估计上界。具体做法与精确覆盖的删除操作比较像。先选中未被删除的一列,删除覆盖该列的所有行,同时删除这些行覆盖的所有列。由此估计出覆盖剩余列需要的行数的上界。
详情请见代码:
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 60;
const int M = 360;
const int inf = 0x3f3f3f3f;
bool flag[N][N];
int n,m,num,ans;
int u[M],d[M],l[M],r[M],row[M],col[M],s[M],h[M];
void init()
{
memset(h,0,sizeof(h));
memset(s,0,sizeof(s));
int i;
for(i = 0;i <= n;i ++)
{
u[i] = d[i] = i;
r[i] = (i + 1) % (n + 1);
l[i] = (i - 1 + n + 1) % (n + 1);
}
num = n + 1;
}
void build(int i,int j)
{
if(h[i])
{
r[num] = h[i];
l[num] = l[h[i]];
r[l[num]] = num;
l[r[num]] = num;
}
else
{
h[i] = num;
l[num] = r[num] = num;
}
s[j] ++;
u[num] = u[j];
d[num] = j;
d[u[num]] = num;
u[j] = num;
col[num] = j;
row[num] = i;
num ++;
}
void remove(int x)
{
for(int i = d[x];i != x;i = d[i])
l[r[i]] = l[i],r[l[i]] = r[i],s[col[i]] --;
}
void resume(int x)
{
for(int i = u[x];i != x;i = u[i])
l[r[i]] = r[l[i]] = i,s[col[i]] ++;
}
int A()
{
int ret = 0;
int i,j,k;
bool vis[N];
memset(vis,false,sizeof(vis));
for(i = r[0];i;i = r[i])
{
if(vis[i] == false)
{
vis[i] = true;
ret ++;
for(j = d[i];j != i;j = d[j])
for(k = r[j];k != j;k = r[k])
vis[col[k]] = true;
}
}
return ret;
}
void dfs(int dp)
{
if(dp + A() >= ans)//少个等号就TLE...
return;
int i,j;
if(r[0] == 0)
{
ans = min(ans,dp);
return;
}
int Max = inf;
int maxcol;
for(i = r[0];i;i = r[i])
{
if(s[i] < Max)
{
Max = s[i];
maxcol = i;
}
}
for(i = d[maxcol];i != maxcol;i = d[i])
{
remove(i);
for(j = r[i];j != i;j = r[j])
{
remove(j);
s[col[j]] --;
}
dfs(dp + 1);
for(j = l[i];j != i;j = l[j])
{
resume(j);
s[col[j]] ++;
}
resume(i);
}
}
int main()
{
int i,j;
while(scanf("%d",&n) != EOF)
{
scanf("%d",&m);
memset(flag,false,sizeof(flag));
while(m --)
{
scanf("%d%d",&i,&j);
flag[i][j] = true;//= flag[j][i]
}
init();
for(i = 1;i <= n;i ++)
for(j = 1;j <= n;j ++)
if(flag[i][j] || i == j)//i == j!!!
build(i,j);
ans = inf;
dfs(0);
printf("%d\n",ans);
}
return 0;
}
慢的不忍直视。。。。