二叉树遍历算法之一:前序遍历

递归实现前序遍历

二叉树的前序遍历是指从根节点出发,按照先根节点,再左子树,后右子树的方法遍历二叉树中的所有节点,使得每个节点都被访问一次。

当调用遍历算法的时候前序遍历的具体过程如下:

  1. 首先访问根节点,如果根节点不为空,执行输出语句,打印根节点的值。
  2. 如果左子树不为空,则访问根节点的左孩子,并输出根节点做孩子的值
  3. 继续访问根节点的左孩子的左孩子,如果不为空则继续输出该左孩子的值;
  4. 如果这时左孩子为空,说明该节点是叶子节点,则按照先左孩子后右孩子的访问方式访问其左右孩子,如果不为空就打印输出
  5. 左子树访问完毕之后,继续访问根节点的右子树,如果根节点的右孩子不为空,则输出该右孩子
  6. 继续访问根节点右孩子的左孩子,如果不为空,则输出
  7. 接着访问根节点右孩子的右孩子,如果不为空,则输出

可以发现这个过程是不断循环进行的,可以使用递归算法实现,具体代码如下:

// 前序遍历的递归实现
    public void preOrderTraverse(TreeNode node) {
        if (node == null)
            return;
        // 先根节点
        System.out.println(node.val);
        // 再左孩子
        preOrderTraverse(node.left);
        // 后右孩子
        preOrderTraverse(node.right);
    }

为了测试使用,我构造一棵二叉树,先添加如下测试代码:

 
public static void main(String[] args) {
        TreeNode root = new TreeNode(8);
        TreeNode node1 = new TreeNode(6);
        TreeNode node2 = new TreeNode(10);
        TreeNode node3 = new TreeNode(5);
        TreeNode node4 = new TreeNode(7);
        TreeNode node5 = new TreeNode(9);
        TreeNode node6 = new TreeNode(11);
        TreeNode node7 = new TreeNode(15);
        TreeNode node8 = new TreeNode(24);
        TreeNode node9 = new TreeNode(30);
        TreeNode node10 = new TreeNode(28);

        root.left = node1;
        root.right = node2;
        node1.left = node3;
        node3.left = node7;
        node7.right = node8;
        node1.right = node4;
        node2.left = node5;
        node2.right = node6;
        node5.left = node9;
        node6.right = node10;

        TraverseTree t = new TraverseTree();
        t.preOrderTraverse(root);
    }

构造出来的二叉树是这样的:

二叉树

所以根据前面的前序遍历算法遍历的结果应该是:8,6,5,15,24,7,10,9,30,11,28

非递归方式实现前序遍历

 

                                                                               

                                                                           (图1) 前序遍历                   

 

                                                                     

                                                             (图2) 前序遍历访问3号结点时的栈状态

    【思路】

   1.对于前序遍历,每当访问一个结点时,先打印结点。
    2.如果存在右子树,那么将右子树的根节点进行进栈保存,否则忽略。
    3.如果存在左子树,那么将左子树的根节点进行进栈保存,然后弹出,将遍历引用指向左子树根节点,否则出栈回溯。
    4.循环的退出条件是需要出栈操作时,栈为空,无法进行该操作。

代码一

import java.util.ArrayList;
import java.util.EmptyStackException;
import java.util.List;
import java.util.Stack;

public class PreOrderTraversal {
	public static List<Integer> preOrderTraversal(TreeNode root) {
		Stack<TreeNode> stack = new Stack<TreeNode>();
		List<Integer> result = new ArrayList<Integer>();

		if (root == null) {
			return result;
		} else {
			TreeNode node = root;
			while (true) {
				result.add(node.val);
				if (node.right != null) {
					//左节点入栈
					stack.push(node.right);
				}
				if (node.left != null) {
					//右节点入栈,并弹出
					stack.push(node.left);
					node = stack.pop();
				} else {
					try {
						//左子节点没有,并且栈不空,就开始弹出保存的右子节点
						node = stack.pop();
					} catch (EmptyStackException e) {
						node = null;
					}
				}
				//栈空,并且没有左子树,结束循环
				if (node == null) {
					break;
				}
			}
		}
		return result;
	}
}

 

代码二】递归代码很简洁,但是也有一些不是很好理解,能不能直接使用循环的方法加以解决呢?采用非递归的思路其实与上面是一致的,不过在遍历的过程中需要使用一些额外的空间保存遍历的中间结果,下面是使用非递归的方式实现前序遍历的代码:

// 前序遍历的非递归实现
    public void preOrderTraverse2(TreeNode node) {
        if (node == null) return;
        //创建一个栈用于保存遍历的结点
        Stack<TreeNode> s = new Stack<TreeNode>();
        while(node != null || !s.isEmpty()){
            //遍历左子树
            while(node != null){
                System.out.print(node.val + " ");
                s.push(node);
                node = node.left;
            }
            //遍历右子树
            if(!s.isEmpty()){
                node = s.pop();
                node = node.right;
            }
        }
    }

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值