/**
题目大意:
给你一个无向连通图,问加上一条边后得到的图的最少的割边数;
算法思想:
图的边双连通Tarjan算法+树形DP;
即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求最长链,连接首尾即可;剩下的连通块即为所求答案;
算法思路:
对图深度优先搜索,定义DFN(u)为u在搜索树中被遍历到的次序号;
定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFN序号最小的节点;
则有:
Low(u)=Min
{
DFN(u),
Low(v),(u,v)为树枝边,u为v的父节点
DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)
}
一个顶点u是割点,当且仅当满足(1)或(2)
(1)u为树根,且u有多于一个子树;
(2)u不为树根,且满足存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),使得DFN(u)<=Low(v);
一条无向边(u,v)是桥,当且仅当(u,v)为树枝边且满足DFN(u)<Low(v);
**/
#pragma comment(linker,"/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<stack>
using namespace std;
const int N=200010;
const int M=1000010;
struct node
{
int v;
int next;
} e[M*2];
int head[N];
int dfn[N],low[N],dp[N][2];//dp[i][0]表示第i个节点的子树中最长的链,dp[i][1]表示第i个节点的子树中第二长的链
bool visit[M];
int n,m,cnt,res;
void AddEdge(int u,int v)
{
e[cnt].v=v;
e[cnt].next=head[u];
head[u]=cnt++;
}
void Tarjan(int u)
{
dfn[u]=low[u]=cnt++;
dp[u][0]=dp[u][1]=0;
for(int i=head[u]; i!=-1; i=e[i].next)
{
int j=e[i].v;
if(!visit[i>>1])
{
visit[i>>1]=true;
if(dfn[j]==0)//跟强连通一样
{
Tarjan(j);
res+=dfn[u]<low[j];//统计连通块,比实际数目少一个,就是回溯的时候的最后一个
int temp=dp[j][0]+(dfn[u]<low[j]);
if(temp>dp[u][0])
{
dp[u][1]=dp[u][0];
dp[u][0]=temp;
}
else if(temp>dp[u][1])
{
dp[u][1]=temp;
}
low[u]=min(low[u],low[j]);
}
else
low[u]=min(low[u],dfn[j]);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
#endif
while(scanf("%d%d",&n,&m)&&n+m)
{
cnt=0;
res=0;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(head,-1,sizeof(head));
for(int i=0; i<m; i++)
{
int u,v;
scanf("%d%d",&u,&v);
AddEdge(u,v);
AddEdge(v,u);
}
cnt=1;
memset(visit,0,sizeof(visit));
Tarjan(1);
int temp=0;
for(int i=1; i<=n; i++)
{
temp=max(temp,dp[i][0]+dp[i][1]);//+的时候没有算当前点所在的块,但是res也少算一个
}
printf("%d\n",res-temp);
}
return 0;
}
hdu4612&多校2之1002
最新推荐文章于 2024-07-22 22:20:26 发布