第7-6课:遗传算法的两个应用实例

本文介绍了遗传算法的基本原理和重要概念,如基因、种群、适应度函数、遗传算子等。通过两个实例,演示了如何应用遗传算法求解抛物线函数最大值和0-1背包问题。遗传算法通过适应度评估选择优良个体,交叉和变异操作保证种群多样性,避免早熟现象。案例展示了如何设计基因编码、适应度函数、选择算子、交叉算子和变异算子,强调了基因编码和适应度函数设计的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前我们介绍过一些求最优解的常用算法模式,比如贪心算法、动态规划算法、穷举算法,都是采用一种确定或几乎确定的方式来寻找最优解。所谓的确定性是指以上这些算法都是建立在确定性基础上的搜索算法,在搜索过程中遇到一个决策点时,对于选 a 还是选 b,其结果是确定的。比如贪婪法,就是按照贪婪策略选择,同样的条件下,每个决策选 1000 次结果都是一样的。

这一课我们要介绍的是随机化算法,该算法并不是闭着眼睛掷骰子,它是一种带启发式的随机搜索,各种随机化算法都有与之对应的理论基础。随机化算法常见的有模拟退火算法、禁忌搜索、蚁群算法、神经网络,当然也包括本课要介绍的遗传算法(Genetic Algorithm)。这些模拟、演化(进化)式的启发式搜索算法的搜索过程不依赖目标函数的信息,非常适合一些传统最优化方法难以解决的复杂问题或非线性问题,在人工智能、自适应控制、机器学习等领域得到了广泛的应用。

遗传算法原理

达尔文(Darwin)的进化论讲述的是物竞天择、适者生存的自然原理,生物体通过自然选择、基因突变和遗传等规律进化出适应环境变化的优良品种。遗传算法就是这样一种借鉴生物体自然选择和自然遗传机制的随机搜索算法,其搜索过程就是“种群”一代一代“进化”的过程,通过评估函数进行优胜劣汰的选择,通过交叉和变异来模拟生物的进化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王晓华-吹泡泡的小猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值