一天时间,我用AI(deepseek)做了一个配色网站

前言

最近在开发颜色搭配主题的相关H5和小程序,想到需要补充一个web网站,因此有了这篇文章。

 一、确定需求

向AI要答案之前,一定要清楚自己想要做什么。

如果没有100%了解自己的需求是什么,可以先让AI帮忙整理思路,然后再正常向AI要答案。

我一开始的需求如下:

我想用vuepress制作一个色彩搭配的网站,需要对用户机型进行页面适配,也就是需要做响应式设计。每个色彩搭配方案以展示色块和颜色编码为一个整体,色彩方案分为双色、三色和四色,每个方案需要你各出十条数据。我用的node版本是21.4.0,用的是npm工具,请你使用vuepress的旧版本进行开发,确保程序可以正常运行和使用。不要出现有bundler等报错问题,请你从0到1告诉我如何搭建这个网站。

技术栈:Vuepress+Vue+Chroma.js

编码工具:VsCode 


为什么会提到“旧版本”和“bundler”等字眼?

如果没有特别说明vuepress版本,那么一般情况下,AI会默认用vuepress最新版本(2.x+)进行开发,而用了2.x+版本创建和初始化项目的时候,会有一些坑,一些关于bundler的相关设置等等(不太想去调试)。简单地说,为了方便起见(且旧版本可能比较稳定) 就用了vuepress旧版本(1.x+)


提供一个精细化需求的思路:尽可能提供多的信息,不断通过确定“边界”,让AI和你“信息对齐”,将大问题拆分成一个小问题,从而有条理有逻辑地解决问题。

二、开发过程(截图展示)

温馨提示:

程序的最终效果不止以下的截图代码。

如何完整完整的页面和功能?

--总结成一句话就是需要和ai不断对话,不断调试,最后达到想要的效果。

色彩方案组件代码

<template>
  <div class="color-palette">
    <h2>{{ title }}</h2>
    <div class="palette-container">
      <div 
        v-for="(color, index) in colors" 
        :key="index" 
        class="color-block"
        :style="{ backgroundColor: color }"
        @click="copyToClipboard(color)"
      >
        <span class="color-code">{{ color }}</span>
      </div>
    </div>
  </div>
</template>

<script>
export default {
  props: {
    title: {
      type: String,
      required: true
    },
    colors: {
      type: Array,
      required: true
    }
  },
  methods: {
    copyToClipboard(text) {
      navigator.clipboard.writeText(text).then(() => {
        alert(`已复制: ${text}`);
      }).catch(err => {
        console.error('复制失败:', err);
      });
    }
  }
}
</script>

<style scoped>
.color-palette {
  margin: 2rem 0;
  padding: 1rem;
  border: 1px solid #eee;
  border-radius: 8px;
}

.palette-container {
  display: flex;
  flex-wrap: wrap;
  gap: 10px;
  margin-top: 1rem;
}

.color-block {
  width: 120px;
  height: 120px;
  border-radius: 8px;
  display: flex;
  align-items: flex-end;
  justify-content: center;
  padding-bottom: 8px;
  cursor: pointer;
  transition: transform 0.2s;
  box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.color-block:hover {
  transform: scale(1.05);
}

.color-code {
  background-color: rgba(255,255,255,0.8);
  padding: 2px 6px;
  border-radius: 4px;
  font-size: 12px;
  font-family: monospace;
}
</style>

 

三、项目调试

温馨提示:无论是使用什么AI工具(这个配色网站我是用的Deepseek)生成代码,一定要重点关注“调试环节”!不要100%相信AI编程!

部分非常基础的编程案例,AI可能是100%正确..,但我相信我们的(业务)需求不是一两句prompt和几行代码就能搞定,所以需要自己动手调试代码、根据报错,提出问题,让A继续修改,最后达到你想要的效果。

我更加相信:AI编码+人工调试,可以让程序员的编程效率有质的飞跃

(前提也要是有基本相关知识/技术,以及确定自己的需求是什么)

项目调试,总结成一句话:“不断和AI对话、不断抛出问题、不断调试,获得自己想要的结果” 

温馨提示:AI生成内容是没有边界、无穷无尽的,你想要多大多难的产出都是有可能的,但那不一定是我们需要的。只要AI的回答能解决当前的需求即可,及时打住,不要陷入盲目的自嗨。至于版本更新迭代,那是后面的事情。 

四、项目展示

这里展示调试后,生成的第一版配色网站。

 

 

五、项目部署(已更新)

考虑到一些细节还需要完善,所以项目部署还没做,后续做了,再返回更新这部分的内容。


已更新,用的宝塔面板进行部署。详细部署可参考我之前发的vue项目部署,流程都是一样的。

【项目配置】vue3项目上传到宝塔面板,图文保姆级教程!

### 使用 DeepSeek 构建服务网站 #### 明确需求与规划 在构建基于 DeepSeek 的服务网站前,需明确该网站的目标和服务对象。这有助于决定所需功能和技术栈的选择。例如,如果目的是提供自动化的故事生成服务,则应考虑用户界面设计、输入方式以及输出展示等方面[^1]。 #### 准备环境 为了使 DeepSeek 能够支持所构建设的服务站点,首先要准备好运行环境。具体来说: - **安装 Ollama**:作为本地部署大型语言模型的重要工具,Ollama 提供了便捷的方式让用户可以在自己的服务器上启动像 DeepSeek 这样的先进AI能力。前往官方网站获取适合操作系统的最新版软件包并完成安装过程[^2]。 - **加载 DeepSeek 模型**:利用 `ollama` 命令行工具来拉取所需的 DeepSeek 版本。对于大多数应用场景而言,较小规模参数量的变体可能已经足够满足性能要求的同时保持较低资源消耗;反之则可以选择更大尺寸的预训练权重文件。执行如下指令以获得指定大小(比如 1.5B 参数)的基础架构: ```bash ollama pull deepseek-r1:1.5b ``` - **引入辅助组件**:除了核心的语言理解模块外,有时还需要额外的支持系统共同协作实现更复杂的功能。比如,在处理文档类任务时,可以借助专门优化过的向量化映射方案提高效率。这里建议采用 BAAI 开发团队维护下的高效能解决方案——`bge-m3`,同样通过简单的命令即可快速集成进来: ```bash ollama pull bge-m3 ``` #### 设计前端交互逻辑 考虑到用户体验的重要性,精心策划网页布局至关重要。针对不同类型的业务流程定制化相应的页面元素组合,确保访客能够轻松找到自己感兴趣的内容板块,并流畅地参与到各项活动中去。特别是当涉及到自然对话式的交流环节时,应当特别注意聊天框的设计风格及其响应机制。 #### 后端开发与API对接 后端部分主要负责接收来自客户端发出的各种请求并将它们转发给底层的 AI 引擎进行解析计算后再返回结果数据流。因此需要编写一系列 RESTful API 或者 GraphQL 查询接口用来桥接前后两端之间的通信渠道。同时也要好错误捕捉和日志记录工作以便于后期调试分析可能出现的问题所在之处。 ```python from flask import Flask, request, jsonify import requests app = Flask(__name__) @app.route('/api/generate_story', methods=['POST']) def generate_story(): user_input = request.json.get('prompt') response = requests.post( "http://localhost:8000/deepseek", json={"input": user_input} ) story_text = response.json().get('output') return jsonify({"story": story_text}) if __name__ == '__main__': app.run(debug=True) ``` 上述代码片段展示了如何创建一个简易的 Web Service 接口 `/api/generate_story` ,它接受 POST 请求中的提示信息并通过 HTTP 协议调用本地已部署好的 DeepSeek 实例来进行故事创作的任务处理。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十八朵郁金香

感恩前行路上有你相伴

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值