学习机器学习最好使用真实数据进行实验,而不仅仅是人工数据集。我们有成千上万覆盖了各个领域的开放数据集可以选择。以下是一些可以获得数据的地方。·
流行的开放数据存储库:
·UC Irvine Machine Learning Repository(http://archive.ics.uci.edu/ml/)
·Kaggle datasets(https://www.kaggle.com/datasets)
·Amazon’s AWS datasets(http://aws.amazon.com/fr/datasets/)
元门户站点(它们会列出开放的数据存储库):
·Data Portals(http://dataportals.org/)
·OpenDataMonitor(http://opendatamonitor.eu/)
·Quandl(http://quandl.com/)
其他一些列出许多流行的开放数据存储库的页面:
·Wikipedia’s list of Machine Learning datasets(https://goo.gl/SJHN2k)
·Quora.com(http://goo.gl/zDR78y)
·The datasets subreddit(https://www.reddit.com/r/datasets)
本文介绍了如何利用众多开放数据集进行机器学习实验,包括UCI Machine Learning Repository、Kaggle等资源,并推荐了元数据门户和流行数据存储网站,帮助读者找到适合的实战资料。

被折叠的 条评论
为什么被折叠?



