描述
- 训练集为评论文本,标签为 pos,neu,neg三种分类,train.csv的第一列为文本content,第二列为label。可以单独使用SVC训练然后预测,也可以使用管道pipeline把训练和预测放在一块。
- SVC的惩罚参数C:默认值是1.0。C越大,对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,泛化能力较强。
- 尽管TF-IDF权重有着非常广泛的应用,但并不是所有的文本权重采用TF-IDF都会有较好的性能。在有些问题上,采用BOOL型的权重(单词在某个文档中出现记为1,不出现记为0)可以得到更好的性能。通过增加CountVectorizer的参数(binary = True)实现。
实验
代码
# -*- coding: utf-8 -*-
import csv
import jieba
jieba.load_userdict('wordDict.txt')
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline

本文介绍如何使用Python的SVM算法进行文本分类。通过train.csv数据集,探讨了SVC的惩罚参数C对模型泛化能力的影响,并讨论了在某些情况下,BOOL型权重可能优于TF-IDF权重的观察。文章提供了实验代码和输出结果。
最低0.47元/天 解锁文章

896

被折叠的 条评论
为什么被折叠?



