用python递归的算法解决汉诺塔问题

本文介绍了使用递归算法解决汉诺塔问题,详细讲解了递归的基准法则,并通过2阶汉诺塔的操作步骤揭示了解决问题的规律。通过Python代码实现了递归算法,帮助读者理解递归思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于递归的四条基准法则

  • 基准情形: 必须由某些基准情形,它无需递归就能解出
  • 不断推进: 对于那些需要递归的情形,每一次递归调用都必须要使求解的状况朝接近基准情形的方向推进
  • 设计法则: 假设所有的递归调用都能运行
  • 合成效益法则: 在求解同一问题的同一实例时, 切勿在不同的递归调用中做重复的工作

_________________摘自《数据结构与算法分析(机械工业出版社Mark Allen Weiss著)》

 

汉诺塔的介绍

汉诺塔是一个发源于印度的益智游戏,也叫河内塔。相传它源于印度神话中的大梵天创造的三个金刚柱,一根柱子上叠着上下从小到大64个黄金圆盘。大梵天命令婆罗门将这些圆盘按从小到大的顺序移动到另一根柱子上,其中大圆盘不能放在小圆盘上面。当这64个圆盘移动完的时候,世界就将毁灭。 
 
汉诺塔问题源于印度神话 
那么好多人会问64个圆盘移动到底会花多少时间?那么古代印度距离现在已经很远,这64个圆盘还没移动完么?我们来通过计算来看看要完成这个任务到底要多少时间? 
我们首先利用数学上的数列知识来看看F(n=1)=1,F(n=2)=3,F(n=3)=7,F(n=4)=15……F(n)=2F(n-1)+1; 
我们使用数学归纳法可以得出通项式:F(n)=2^n-1。当n为64时F(n=64)=1844674407370955161

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值