先验概率, 后验概率, 似然函数, 证据因子

先验概率, 后验概率, 似然函数, 证据因子

理论

假设有变量 x x x y y y, x x x表示特征, y y y表示我们关心的变量, 可以是分类变量或者连续变量. 那么, 关于 y y y的先验概率为 p ( y ) p(y) p(y), 关于 y y y的后验概率为 p ( y ∣ x ) p(y|x) p(yx), 似然函数为 p ( x ∣ y ) p(x|y) p(xy), 证据因子 p ( x ) p(x) p(x), 根据全概率公式和贝叶斯公式可以得到它们之间的关系, 预先假设 y y y m m m种取值:
(1) p ( y i ∣ x ) = p ( x , y i ) p ( x ) = p ( x ∣ y i ) p ( y i ) p ( x ) = p ( x ∣ y i ) p ( y i ) ∑ j = 1 m p ( x ∣ y j ) p ( y j ) , ( 1 ≤ i ≤ m ) \begin{aligned} p(y_i|x) &= \frac{p(x,y_i)}{p(x)} \\ &= \frac{p(x|y_i)p(y_i)}{p(x)} \\ &= \frac{p(x|y_i)p(y_i)}{\sum_{j=1}^{m}{p(x|y_j)p(y_j)}}, (1 \leq i \leq m) \tag{1} \end{aligned} p(yix)=p(x)p(x,yi)=p(x)p(xyi)p(yi)=j=1mp(xyj)p(yj)p(xyi)p(yi),(1im)(1)
根据训练样本(包含特征类别), 无法直接求出后验概率, 后验概率需要通过似然函数和先验概率间接求得.

注意: 这里的先验概率和后验概率是相对的, p ( x ) ​ p(x)​ p(x)也可以是先验概率, p ( x ∣ y ) ​ p(x|y)​ p(xy)为后验概率, 只是相对于 x ​ x​ x而已.

例子

假设 x ​ x​ x表示特征, 特征取值范围有: { 阴 天 , 晴 天 } ​ \{阴天, 晴天\}​ {,}, y ​ y​ y表示分类, 取值范围有: { 下 雨 , 不 下 雨 } ​ \{下雨, 不下雨\}​ {,}. 现在我们根据"是否阴天"这个随机变量 x ​ x​ x的观测样本数据(特征样本), 来判断是否会下雨.

根据历史经验估计,

  • 下雨的概率为20%, 可得到先验概率 p ( y = 下 雨 ) = 0.2 p(y=下雨)=0.2 p(y=)=0.2

  • 阴天时下雨的概率为70%, 可得到后验概率为 p ( y = 下 雨 ∣ x = 阴 天 ) = 0.7 p(y=下雨|x=阴天) = 0.7 p(y=x=)=0.7

根据现有训练样本可以求得:

  • 下雨表现为阴天的概率记为 p ( x = 阴 天 ∣ y = 下 雨 ) p(x=阴天|y=下雨) p(x=y=), 可以解释如下: 下雨表现为阴天的可能性(likelihood)
  • 估计的先验概率

参考

先验概率、似然函数、后验概率、贝叶斯公式
公式序号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值