蓝旭晨枫╮

无论这个世界对你怎样,都请你一如既往的努力、勇敢、充满希望

有关树的几个经典问题

1、假设二叉树
N0 = x //度数为0的节点数,N1 = y //度数为1的节点数,N2 = z //度数为2的节点数
其中有关系:
N0 = N2 + 1

2、对于一棵节点数为n、度为4的树来说那么树的高度至多是n-3


但是某一层并不一定正好有4个节点,因为这和度为4并没有必然联系

3、度为4,高度为h的树,至少有h+3个节点。原理同上一题。

4、后序线索树的遍历仍然需要栈的支持。


如上图所示,后序线索树遍历时,最后访问根节点。如果是从右孩子x返回访问父节点
由于节点x的右孩子不一定为空,此时右指针无法指向其后继,因此通过指针可能无法遍历整棵树
如图中,节点中数字表示遍历顺序。
a、节点6的右指针指向其右孩子5,而不指向其后序后继节点7
b、因此后序遍历还需要栈的支持,而前序和中序可以不用。

5、一棵哈夫曼树,共有215个节点,对其进行哈夫曼编码,共有多少种不同的码字?
n0 = n2 + 1,n0为叶子节点,n2为度为2的节点,哈夫曼树只有度为0和度为2的节点。因此叶子节点数为 (215 + 1)/ 2 = 108 个,因此共有108种不同的编码


6、含有20个节点的平衡二叉树最大深度为多少?
平衡二叉树节点数的递推公式为 
N0 = 0
N1 = 1
N2 = 2
N(h) = 1 + N(h-1) + N(h-2) //h为平衡二叉树高度,N(h)为构造此平衡二叉树所需最少节点数
由此公式得:
构造5层至少需要12个节点,构造6层需至少要20个节点。
阅读更多
版权声明:本文为博主原创文章 未经博主允许不得转载 https://blog.csdn.net/ouyangjinbin/article/details/51075893
文章标签: 算法 数据结构
个人分类: Algorithm
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭