Shift and rotate operations
移动和旋转操作
The following types of shift and rotate operations are used in instructions:
Logical Shift Left
逻辑左移
(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at the right
end of the bitstring. Bits that are shifted off the left end of the bitstring are discarded, except that the
last such bit can be produced as a carry output.
Logical Shift Right
逻辑右移
(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in at the left
end of the bitstring. Bits that are shifted off the right end of the bitstring are discarded, except that
the last such bit can be produced as a carry output.
Arithmetic Shift Right
算数右移
(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost bit are
shifted in at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.
循环右移
Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted off the
right end of the bitstring is re-introduced at the left end. The last bit shifted off the right end of the
bitstring can be produced as a carry output.
Rotate Right with Extend
带扩展的循环左移
(RRX) moves each bit of a bitstring right by one bit. A carry input is shifted in at the left end of the
bitstring. The bit shifted off the right end of the bitstring can be produced as a carry output.
Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:
// LSL_C()
// =======
(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);
// LSL()
// =====
bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;
// LSR_C()
// =======
(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);
// LSR()
// =====
bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;
// ASR_C()
// =======
(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);
// ASR()
// =====
bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;
// ROR_C()
// =======
(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);
// ROR()
// =====
bits(N) ROR(bits(N) x, integer shift)
if shift == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;
// RRX_C()
// =======
(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);
// RRX()
// =====
bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;
// AddWithCarry()
// ==============
(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then '0' else '1';
overflow = if SInt(result) == signed_sum then '0' else '1';
return (result, carry_out, overflow);
(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2^(N-1) - 1 then
result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then
result = -(2^(N-1)); saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
// UnsignedSatQ()
// ==============
(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2^N - 1 then
result = 2^N - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
// SignedSat()
// ===========
bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;
// UnsignedSat()
// =============
bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;
// SatQ()
// ======
(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);
// Sat()
// =====
bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;
移动和旋转操作
The following types of shift and rotate operations are used in instructions:
Logical Shift Left
逻辑左移
(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at the right
end of the bitstring. Bits that are shifted off the left end of the bitstring are discarded, except that the
last such bit can be produced as a carry output.
Logical Shift Right
逻辑右移
(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in at the left
end of the bitstring. Bits that are shifted off the right end of the bitstring are discarded, except that
the last such bit can be produced as a carry output.
Arithmetic Shift Right
算数右移
(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost bit are
shifted in at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.
循环右移
Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted off the
right end of the bitstring is re-introduced at the left end. The last bit shifted off the right end of the
bitstring can be produced as a carry output.
Rotate Right with Extend
带扩展的循环左移
(RRX) moves each bit of a bitstring right by one bit. A carry input is shifted in at the left end of the
bitstring. The bit shifted off the right end of the bitstring can be produced as a carry output.
Pseudocode details of shift and rotate operations
These shift and rotate operations are supported in pseudocode by the following functions:
// LSL_C()
// =======
(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);
// LSL()
// =====
bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;
// LSR_C()
// =======
(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);
// LSR()
// =====
bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSR_C(x, shift);
return result;
// ASR_C()
// =======
(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);
// ASR()
// =====
bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = ASR_C(x, shift);
return result;
// ROR_C()
// =======
(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);
// ROR()
// =====
bits(N) ROR(bits(N) x, integer shift)
if shift == 0 then
result = x;
else
(result, -) = ROR_C(x, shift);
return result;
// RRX_C()
// =======
(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);
// RRX()
// =====
bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;
// AddWithCarry()
// ==============
(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then '0' else '1';
overflow = if SInt(result) == signed_sum then '0' else '1';
return (result, carry_out, overflow);
(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2^(N-1) - 1 then
result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then
result = -(2^(N-1)); saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
// UnsignedSatQ()
// ==============
(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2^N - 1 then
result = 2^N - 1; saturated = TRUE;
elsif i < 0 then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
// SignedSat()
// ===========
bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;
// UnsignedSat()
// =============
bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;
// SatQ()
// ======
(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);
// Sat()
// =====
bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;