sklearn模型保存与加载

sklearn模型的保存和加载API

from sklearn.externals import joblib

# 保存:joblib.dump(estimator, 'test.pkl')
# 加载:estimator = joblib.load('test.pkl')

注意:保存的后缀名是.pkl

线性回归的模型保存加载案例

保存模型

# 1.获取数据 
data = load_boston()

# 2.数据集划分 数据的基本处理
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

# 3.特征工程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)


# 4.1 创建模型 实例化估计器
estimator = Ridge(alpha=1)
# 4.2 训练模型 fit 正规方程计算得到最优可训练参数
estimator.fit(x_train, y_train)

#保存模型
joblib.dump(estimator,'./test.pkl')

# 加载模型
estimator = joblib.load('./test.pkl')

# 5.模型评估
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏置为:\n", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏安   

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值