不定积分

不定积分

微积分中,一个函数 不定积分,或原函数,或反导数,是一个 导数等于 函数  F ,即 F ′ =  f。不定积分和定积分间的关系由 微积分基本定理确定。其中 Ff的不定积分。根据 牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系,其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
中文名
不定积分
外文名
indefinite integral
本    质
函数表达式
类    别
高等数学
符    号

性质

编辑
1、函数的和的不定积分等于各个函数的不定积分的和;即:设函数
   
   
的原函数存在,则
2、求不定积分时,被积函数中的 常数因子可以提到积分号外面来。即:设函数
   
的原函数存在,
   
非零常数,则

求解

编辑
 
F( x)是函数 f( x)的一个 原函数,我们把函数 f( x)的所有原函数 F( x)+  C(其中, C为任意常数)叫做函数 f( x)的不定积分,又叫做函数 f( x)的反导数,记作∫ f(x)d x或者∫ f(高等微积分中常省去d x),即∫ f( x)d x= F( x)+ C
不定积分
不定积分 (8张)
 其中∫叫做积分号, f( x)叫做被积函数,x叫做积分变量, f( x)d x叫做被积式, C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
由定义可知:
求函数 f( x)的不定积分,就是要求出 f( x)的所有的 原函数,由原函数的性质可知,只要求出函数 f( x)的一个原函数,再加上任意的常数 C,就得到函数 f( x)的不定积分。

积分公式

编辑
注:以下的 C都是指任意积分常数。
1、
   
a是常数
2、
   
,其中 a为常数,且 a ≠ -1
3、
 
4、
 
5、
   
,其中 > 0 ,且 a ≠ 1
6、
 
7、
 
8、
 
9、
 
10、
 
11、
 
12、
 
13、
 
14、
 
15、
 
全体原函数之间只差任意常数C
不定积分 不定积分
证明:如果 f( x)在区间 I上有原函数,即有一个函数 F( x)使对任意 xI,都有 F'( x)= f( x),那么,对任何常数显然也有[ F( x)+ C]'= f( x).即对任何常数 C,函数 F(x)+ C也是 f(x)的原函数。这说明如果 f( x)有一个原函数,那么 f( x)就有无限多个原函数。
G( x)是 f( x)的另一个原函数,即∀ xIG'( x)= f( x)。于是[ G( x)- F( x)]'= G'( x)- F'( x)= f( x)- f( x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以 G( x)- F( x)= C’( C‘为某个常数)。
这表明 G( x)F( x)只差一个常数.因此,当 C为任意常数时,表达式 F( x)+ C就可以表示 f( x)的任意一个原函数。也就是说 f( x)的全体原函数所组成的集合就是函数族{ F( x)+ C|-∞< C<+∞}。
由此可知,如果 F( x)是 f( x)在区间 I上的一个原函数,那么 F( x)+ C就是 f( x)的不定积分,即∫ f( x)d x= F( x)+ C。
因而不定积分∫ f( x) d x可以表示 f( x)的任意一个原函数。

积分方法

编辑

积分公式法

直接利用积分公式求出不定积分。

换元积分法

不定积分 不定积分
换元积分法可分为第一类换元法与第二类换元法。
一、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例如
   
二、注:第二类换元法的变换式必须可逆,并且
   
在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
1、 根式代换法,
2、 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
链式法则是一种最有效的微分方法,自然也是最有效的积分方法,下面介绍链式法则在积分中的应用:
链式法则:
 
我们在写这个公式时,常常习惯用u来代替g,即:
如果换一种写法,就是让:
就可得:
这样就可以直接将dx消掉,走了一个捷径。

分部积分法

不定积分 不定积分
设函数和 uv具有连续导数,则d( uv)= ud v+ vd u移项得到 ud v=d( uv)- vd u
两边积分,得分部 积分公式
ud v=uv-∫ vd u。 
称公式⑴为分部积分公式.如果积分∫ vd u易于求出,则左端积分式随之得到.
分部积分公式运用成败的关键是恰当地选择 u, v
一般来说, u, 选取的原则是:
1、积分容易者选为 v, 2、 求导简单者选为 u
例子:∫ Inx dx中应设U=Inx,V=x
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为 整式(即多项式)和 分式(即两个多项式的商),分式分为 真分式和假分式,而假分式经过 多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为 部分分式之和。

不可积函数

编辑
不定积分 不定积分
虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如
   
,x x ,sin x/ x这样的函数是不可积的。
词条图册 更多图册
词条图片
词条图片 (6)
不定积分
不定积分 (8)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值