论文标题
Human-Guided Moral Decision Making in Text-Based Games
基于文本游戏的人类引导式道德决策
论文链接
Human-Guided Moral Decision Making in Text-Based Games论文下载
论文作者
Zijing Shi, Meng Fang, Ling Chen, Yali Du, Jun Wang
内容简介
本文提出了一种名为HuMAL(Human-guided Morality Awareness Learning)的算法,旨在通过人类引导的方式,使强化学习(RL)智能体在文本游戏中实现道德决策。该算法通过人机协作,利用有限的人类反馈自适应地学习个人价值观,并在Jiminy Cricket基准测试中验证了其有效性。实验结果表明,HuMAL能够在少量人类反馈下提升任务表现,减少不道德行为,并适应不同的个人价值观。该研究为强化学习智能体的道德对齐提供了新的思路。
分点关键点
1.HuMAL算法设计
HuMAL算法包含两个阶段:智能体学习和人机协作。在智能体学习阶段,代理