论文标题
LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection
LogFormer: 用于日志异常检测的预训练和微调管道
论文链接
LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection论文下载
论文作者
Hongcheng Guo, Jian Yang, Jiaheng Liu, Jiaqi Bai, Boyang Wang, Zhoujun Li, Tieqiao Zheng, Bo Zhang, Junran Peng, Qi Tian
内容简介
本文提出了一种名为LogFormer的统一Transformer框架,用于日志异常检测,旨在提高跨不同领域的泛化能力。LogFormer采用两阶段的处理流程,包括预训练和基于适配器的微调阶段。首先,模型在源域上进行预训练,以获取日志数据的共享语义知识。然后,通过共享参数将这些知识转移到目标域。此外,提出的Log-Attention模块用于补充日志解析过程中忽略的信息。实验结果表明,LogFormer在多个基准数据集上表现出色,具有更少的可训练参数和更低的训练成本。
分点关键点
-
LogFormer框架
- LogFormer是一个基于Transformer的框架,旨在解决多领域日志异常检测中的泛化能力不足的问题。它通过预训练和适配器微调的两阶段流程,能够有效地保留不同领域之间的共享语义知识。
- LogFormer是一个基于Transformer的框架,旨在解决多领域日志异常检测中的泛化能力不足的问题。它通过预训练和适配器微调的两阶段流程,能够有效地保留不同领域之间的共享语义知识。
-
预训练与适配器微调
- 在预训练阶段,LogFormer在源域上学习日志序列的共同语义。随后,在目标域上通过适配器进行微调,适配器的参数在此阶段被更新,而预训练模型的其他参数则保持不变,从而减少了训练成本。
- 在预训练阶段,LogFormer在源域上学习日志序列的共同语义。随后,在目标域上通过适配器进行微调,适配器的参数在此阶段被更新,而预训练模型的其他参数则保持不变,从而减少了训练成本。
-
Log-Attention模块
- Log-Attention模块的引入旨在避免日志解析过程中信息的丢失。该模块通过增强对日志序列中参数和关键字信息的聚合,提升了模型的性能。
-
实验结果与性能
- LogFormer在多个公共基准数据集上取得了最先进的性能,显示出其在处理多源日志时的有效性。与现有方法相比,LogFormer在精确率、召回率和F1分数上均表现优异。
- LogFormer在多个公共基准数据集上取得了最先进的性能,显示出其在处理多源日志时的有效性。与现有方法相比,LogFormer在精确率、召回率和F1分数上均表现优异。
-
训练效率
- LogFormer在训练和测试时间上均表现出色,相较于其他最先进的方法,训练和测试时间消耗最低,显示出其在工业应用中的潜力。
论文代码
代码链接:https://github.com/LogFormer
中文关键词
- 日志异常检测
- 预训练
- 微调
- Transformer
- Log-Attention
- 跨领域泛化
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!