East Meets West: How the Brain Unites Us All

1、  For a start, the affect how people categorize objects, with EastAsians tending to group things according to how they relate to each other andAmericans tending to rely on shared features.

首先,人们如何分类物体的情绪,即东亚人趋向于根据事物之间的相关性分类事物

         美国人则依据共有的特征。

2、  Americans are more likely to explain murders and sports events byinvoking the traits and abilities of individuals, while Chinese intend to referto historic factors.

    美国人更愿意通过援引特征和个人的能力讲解谋杀和体育活动,而中国人倾向于归因历史因素。

3、  Chinese people are happier with contradictions and try to find amiddle ground between two opposing positions, while Americans are more inclinedto reject one proposition for the other.

    中国人更高兴于矛盾并且尝试在相反的状态中找到中间状态,而美国人更倾向于为一个建议而拒绝另一个建议。

4、  Westerners appear to perceive the world in an analytic way,narrowing their focus onto prominent objects, lumping them into categories andexamining them through logic.

    西方人似乎通过分解的方式理解世界,限定他们的焦点到突出的目标,归类他们成不同种类并且使用逻辑审查他们。

5、  That might explain why many psychologists have been happy to goalong with it. However, recently it has become apparent that the East-Westdichotomy is not as clear-cut as this.

    那可能解释为什么许多心理学家已经乐意于赞同它。然而,最近东西方对分法不像这种方法鲜明已经变得明显。

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值