Superformular(Supershapes)

The superformula is a generalization of the superellipse and was first proposed by Johan Gielis.

Gielis suggested that the formula can be used to describe many complex shapes and curves that are found in nature.

In polar coordinates, with $r$ the radius and $\varphi$ the angle, the superformula is:

The formula appeared in a work by Gielis. It was obtained by generalizing the superellipse, named and popularized by Piet Hein, a Danish mathematician.

[hide

Extension to higher dimensions

It is possible to extend the formula to 3, 4, or n dimensions, by means of the spherical product of superformulas. For example, the 3D parametric surface is obtained by multiplying two superformulas r1and r2. The coordinates are defined by the relations:

$x \,=\, r_1(\theta)\cos(\theta)r_2(\phi)\cos(\phi)$
$y \,=\, r_1(\theta)\sin(\theta)r_2(\phi)\cos(\phi)$
$z \,=\, r_2(\phi)\sin(\phi)$

where $\phi$ varies between -π/2 and π/2 (latitude) and θ between  and π (longitude).

Plots

GNU Octave program for generating these figures:

  function sf2d(n,a)
u=[0:.001:2*pi];
raux=abs(1/a(1).*abs(cos(n(1)*u/4))).^n(3)+abs(1/a(2).*abs(sin(n(1)*u/4))).^n(4);
r=abs(raux).^(-1/n(2));
x=r.*cos(u);
y=r.*sin(u);
plot(x,y);
end


3d Superformula: a=b=1; m, n1, n2 and n3 are shown in the pictures.

GNU Octave program for generating these figures:

 function sf3d(n, a)
u=[-pi:.05:pi];
v=[-pi/2:.05:pi/2];
nu=length(u);
nv=length(v);
for i=1:nu
for j=1:nv
raux1=abs(1/a(1)*abs(cos(n(1).*u(i)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*u(i)/4))).^n(4);
r1=abs(raux1).^(-1/n(2));
raux2=abs(1/a(1)*abs(cos(n(1)*v(j)/4))).^n(3)+abs(1/a(2)*abs(sin(n(1)*v(j)/4))).^n(4);
r2=abs(raux2).^(-1/n(2));
x(i,j)=r1*cos(u(i))*r2*cos(v(j));
y(i,j)=r1*sin(u(i))*r2*cos(v(j));
z(i,j)=r2*sin(v(j));
endfor;
endfor;
mesh(x,y,z);
endfunction;
int segments = 800;
float scale = 20.0;

float a  = 1.0;
float b  = 0.80;
float m  = 15.0;
float n1 = -8.0;
float n2 = 12.0;
float n3 = 10.0;

float tau = 6.28318530718;
float step = tau / segments;

float phi = 0.0;

for (float o=0.0; o<0.5; o+=0.01) {

for (int i=0; i<segments; i++) {
float mp4 = (m * phi) / 4.0;
float term_a = pow(abs((cos(mp4) / a)), n2);
float term_b = pow(abs((sin(mp4) / b)), n3);
float r = pow((term_a + term_b), -(1 / n1));
addpoint( geoself(), set(cos(phi)*scale*r, sin(phi)*scale*r, 0) );
phi += step;
}

a += o;
b += o/25;
}

References

• 本文已收录于以下专栏：

举报原因： 您举报文章：Superformular(Supershapes) 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)