作者是一名在校学生,刚开始学习高数时不知从何下手,出此文章,一是希望能够帮助大家用最短的时间把高数知识点掌握;二是把我在学习高数过程中遇到的一些问题和心得分享给大家,若能对您有所帮助,万分荣幸,若有不对的地方,敬请见谅!
本文章纯手敲狂肝持续更新中,望转载时标明出处或@作者 ,谢谢谢谢!
如果您发现本文章由任何地方讲解有误,愿意通过私信或留言告诉我的话,我将万分感谢!
函数
一、函数的定义
y=f(x) 形如这种样子的咱们就叫它函数,其中x叫做自变量,y叫做因变量。按照我的理解来的话咱们可以把 f(□)看做是一个榨汁机,假如手中有一根甘蔗,咱们把它放到括号里面就可以得到一杯甘蔗汁,例如:甘蔗汁=榨汁机(甘蔗)
当我们把甘蔗放到榨汁机里面得出来的必然是一杯甘蔗汁,而不是其他的东西,按照书上的概念来说就是有一个x放进f()的时候,得出来的必然只有一个y。f(x)和y是对应的,不能出现一个一对多,不然就不是函数了
f()为对应法则,x为甘蔗时,y为甘蔗汁,x为苹果时,y为苹果汁。因为y是随着x的改变而改变的,所以y叫做因变量(因为别人而改变),x叫做自变量(因为自己改变自己)。
概念过一遍即可,如果没理解也不必纠结。
二、什么是定义域
定义域就是咱们x的取值范围,如果咱们把x看成张三,x的取值范围看成是他食量。那么咱们就可以得出:
1.在吃饱的情况下------张三 能吃下的饭量为 1
2.在没有吃饭的情况下------张三 能吃下的饭量为 3
3.在喝完三大瓶水的情况下------张三 能吃下的饭量为 2
简而言之就是在什么的情况下x的取值范围为多少。
三、考点题型
对于函数而言我们只需要记住以下函数的定义域即可。(或记住张三在什么的情况下的饭量)。
例如当y等于x分之一时,x是不能等于零的。当y等于狗分之一,那么狗就不能为零。
对于上面这些式子也没啥好说的,就只能靠多记了。
有人问记不住怎么办,记不住请告诉我你的地址,我要跑过去跳起来打你膝盖。
tip:注意整体思想,这点很重要,在后续的章节中都会用到,要有这个意识
大家看上图中的式子①,当y=x分之1时,x是不能等于零的。所谓的整体思想就是,我们需要将x所在的位置看成一个方框,下方如图所示:
1. 求具体函数定义域
多说无意,咱们上题目。
加点难度:
2. 求抽象函数定义域
题型:已知f(a)的定义域,求f(b)中x的范围(定义域)
3. 根据对应法则求函数表达式
题型:已知f(x)求 f[ f(x) ]
tip:做题方法直接带入即可
总结
多记多看多练