优化方法,一些重要参数learning rate,weight decay,momentum,learing rate decay

http://blog.csdn.net/lien0906/article/details/47399823


http://blog.csdn.net/u014114990/article/details/47779111


Stochastic Gradient Descent (SGD)

SGD的参数

在使用随机梯度下降(SGD)的学习方法时,一般来说有以下几个可供调节的参数:

  • Learning Rate 学习率
  • Weight Decay 权值衰减
  • Momentum 动量
  • Learning Rate Decay 学习率衰减

再此之中只有第一的参数(Learning Rate)是必须的,其余部分都是为了提高自适应性的参数,也就是说后3个参数不需要时可以设为0。

Learning Rate

学习率决定了权值更新的速度,设置得太大会使结果越过最优值,太小会使下降速度过慢。仅靠人为干预调整参数需要不断修改学习率,因此后面3种参数都是基于自适应的思路提出的解决方案。





SGD优缺点

  • 实现简单,当训练样本足够多时优化速度非常快
  • 需要人为调整很多参数,比如学习率,收敛准则等

Averaged Stochastic Gradient Descent (ASGD)

在SGD的基础上计算了权值的平均值。
$$\bar{w}t=\frac{1}{t-t_0}\sum^t{i=t_0+1} w_t$$

ASGD的参数

在SGD的基础上增加参数$t_0$

  • 学习率 $\eta$
  • 参数 $t_0$

ASGD优缺点

  • 运算花费和second order stochastic gradient descent (2SGD)一样小。
  • 比SGD的训练速度更为缓慢。
  • $t_0$的设置十分困难

3. Conjugate Gradient(共轭梯度法)

介于最速下降法与牛顿法之间的一个方法,它仅仅需要利用一阶导数的信息,克服了GD方法收敛慢的特点。

Link 1

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) (一种拟牛顿算法)

L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源。

Link 1
Link 2
Link 3

应用分析

不同的优化算法有不同的优缺点,适合不同的场合:

  • LBFGS算法在参数的维度比较低(一般指小于10000维)时的效果要比SGD(随机梯度下降)和CG(共轭梯度下降)效果好,特别是带有convolution的模型。
  • 针对高维的参数问题,CG的效果要比另2种好。也就是说一般情况下,SGD的效果要差一些,这种情况在使用GPU加速时情况一样,即在GPU上使用LBFGS和CG时,优化速度明显加快,而SGD算法优化速度提高很小。
  • 在单核处理器上,LBFGS的优势主要是利用参数之间的2阶近视特性来加速优化,而CG则得得益于参数之间的共轭信息,需要计算器Hessian矩阵。


展开阅读全文