自己动手写施密特正交化

import numpy as np
A = np.array([[1,1,0],[0,1,1],[1,0,1]],dtype=float)
Q = np.zeros_like(A)
m = shape(Q)[0]
n = shape(Q)[1]
cnt = 0
for a in A.T:
    u = np.copy(a)
    for i in range(0, cnt):
        u -= np.dot(np.dot(Q[:, i].T, a), Q[:, i]) # 减去待求向量在以求向量上的投影
    e = u / np.linalg.norm(u)  # 归一化
    Q[:, cnt] = e
    cnt += 1
print Q
以上是自己写的,也可以调用scipy
from scipy import linalg
A = np.array([[1,1,0],[0,1,1],[1,0,1]])
a = linalg.orth(A)
print array(linalg.orth(A),dtype=float)
print dot(A,A.T)-1
施密特正交化的原理就不在此赘述了,可以自己从网上找一些线性代数的教材看一看,并且自己动手做一下,就可以理解了
  • 3
    点赞
  • 6
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

panghaomingme

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值