TF-IDF 加权及其应用

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索的常用加权技术。TF-IDF是一种统计方法,用以评估某个单词对于一个文档集合(或一个语料库)中的其中一份文件的重要程度。单词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级。

 

一、原理

在一份给定的文件里,词频 (term frequency, TF) 指的是某一个给定的单词在该文件中出现的次数。这个数字通常会被归一化,以防止它偏向长的文件(同一个单词在长文件里可能会比短文件有更高的词频,而不管该词语重要与否)。

TF(w,d) = count(w,d)/size(d)
其中,count(w,d):单词w在文档d中出现次数;size(d):文档d中总的单词个数;

逆向文件频率 (inverse document frequency, IDF) 是一个单词普遍重要性的度量。某一特定单词的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。IDF是一个全局因子,其考虑的不是文档本身的特征,而是特征单词之间的相对重要性。特征词出现在其中的文档数目越多,IDF值越低,这个词区分不同文档的能力就越差。

IDF(w)=log(n/docs(w, D))

其中,n是文档总数;docs(w, D)是词w所出现过的文件数;
 
TF-IDF的主要思想是 :如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

更详细内容可参考这里点击打开链接
  • 使用TF-IDF算法,找出两篇文章的关键词;
  • 每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);
  • 生成两篇文章各自的词频向量;
  • 计算两个向量的余弦相似度(如下图),值越大就表示越相似。


4、自动摘要

2007年,美国学者的论文《A Survey on Automatic Text Summarization》(Dipanjan Das, Andre F.T. Martins, 2007)总结了目前的自动摘要算法。其中很重要的一种就是词频统计,这种方法最早出自1958年的IBM公司科学家H.P. Luhn的论文《The Automatic Creation of Literature Abstracts》。

Luhn博士认为,文章的信息都包含在句子中,有些句子包含的信息多,有些句子包含的信息少。"自动摘要"就是要找出那些包含信息最多的句子。句子的信息量用"关键词"来衡量。如果包含的关键词越多,就说明这个句子越重要。Luhn提出用"簇"(cluster)表示关键词的聚集。所谓"簇"就是包含多个关键词的句子片段。


上图就是Luhn原始论文的插图,被框起来的部分就是一个"簇"。只要关键词之间的距离小于"门槛值",它们就被认为处于同一个簇之中。Luhn建议的门槛值是4或5。也就是说,如果两个关键词之间有5个以上的其他词,就可以把这两个关键词分在两个簇。
下一步,对于每个簇,都计算它的重要性分值。

以前图为例,其中的簇一共有7个词,其中4个是关键词。因此,它的重要性分值等于 ( 4 x 4 ) / 7 = 2.3。
然后,找出包含分值最高的簇的句子(比如5句),把它们合在一起,就构成了这篇文章的自动摘要。

PS:Luhn的这种算法后来被简化,不再区分"簇",只考虑句子包含的关键词。



  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值