
深度学习
深度学习的入门课程,主要是讲解caffe,caffe2开发环境搭建,如何设计网络模型,训练自己的模型
高司机
公众号:游戏开发司机 资深游戏服务器,曾就职IBM LSF,淘米网,网易雷火
-
原创 抖音快手小视频推荐算法之--协同过滤算法剖析
有人说抖音摧毁了中国的年轻人,也有人说抖音改变了自己的生活形态,还有人说抖音让自己的生活过的更加有意义……一千个人眼中,有一千个哈姆雷特,各人有各个行使自己话语的权力,我们无从争辩。对于做自媒体的同仁们来说抖音就是粉丝变现的另外一个渠道,那抖音具体的算法是什么样的呢? 抖音的流量分配是去中心化的。在微博和公众号上,如果你没有粉丝的话,你发的内容就不会有人看,但是抖音就不一样,你可以完全没有粉丝。所有的抖音用户,你拍的任何一个视频无论质量好坏,发布了之后一定会有播放量,从几十到上千都...2020-11-18 09:35:171262
2
-
原创 ncnn网络框架使用指南
下面以在ncnn上实现caffe网络模型为例,和大家分享下ncnn这个牛叉的网络框架的使用指南。准备caffe网络和模型caffe 的网络和模型通常是搞深度学习的研究者训练出来的,一般来说训练完会有train.prototxtdeploy.prototxtsnapshot_10000.caffemodel部署的时候只需要 TEST 过程,所以有 deploy.prototxt 和 caffemodel 就足够了alexnet 的 deploy.prototxt 可以在这里下载ht.2020-11-13 10:22:5890
0
-
原创 Caffe将图像数据转换成leveldb/lmdb
Caffe中convert_imageset projrct将图像数据转换成Caffe能读取的数据格式leveldb/lmdb -gray=true //whether read gray image-shuffle=true //whether mix order-resize_height=28 -resize_...2018-10-08 16:45:47316
0
-
原创 caffe网络结构图绘制
绘制网络图通常有两种方法:一种是利用python自带的draw_net.py,首先安装两个库:sudo apt-get install graphvizsudo pip install pydot接下来就可以用python自带的draw_net.py文件来绘制网络图了。draw_net.py执行时带三个参数:一、网络模型的prototxt文件;二、保存的图片路径和名字;...2018-10-08 16:14:51251
0
-
原创 caffe各层参数详解
在prototxt文件中,层都是用layer{}的结构表示,而里面包含的层的参数可以在caffe.proto文件中找到,比如说Data类型的结构由message DataParameter所定义,Convolution类型的结构由message ConvolutionParameter所定义。具体说明下:name表示该层的名称 type表示该层的类型,如Data或者Convolution类...2018-10-08 16:13:181932
0
-
转载 pytorch学习 训练一个分类器(五)
训练一个分类器就是这个, 你已经看到了如何定义神经网络, 计算损失并更新网络的权重.现在你可能会想,数据呢?一般来说, 当你不得不处理图像, 文本, 音频或者视频数据时, 你可以使用标准的 Python 包将数据加载到一个 numpy 数组中. 然后你可以将这个数组转换成一个 torch.*Tensor.对于图像, 会用到的包有 Pillow, OpenCV . 对于音频, ...2018-09-29 14:53:361150
0
-
转载 pytorch学习入门 (二) Variable(变量)
Variable(变量)autograd.Variable 是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward() 方法, 然后所有的梯度计算会自动进行.你还可以通过 .data 属性来访问原始的张量, 而关于该 variable(变量)的梯度会被累计到 .grad上去.Variable还有一个针对自动求导实现来说...2018-09-29 11:05:2622333
0
-
原创 pytorch学习 入门篇(一)
PyTorch 是什么?它是一个基于 Python 的科学计算包, 其主要是为了解决两类场景:NumPy 的替代品, 以使用 GPU 的强大加速功能 一个深度学习研究平台, 提供最大的灵活性和速度Tensors(张量)Tensors 与 NumPy 的 ndarrays 非常相似, 除此之外还可以在 GPU 上使用张量来加速计算. from __future__ impo...2018-09-29 10:32:14396
0
-
转载 caffe开始训练自己的模型(转载并验证过)
学习caffe中踩了不少坑,这里我参考了此博主的文章,并体会到了如何训练自己的模型:http://www.cnblogs.com/denny402/p/5083300.html学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。一、准备数据有条件的同学,可以去imagenet...2018-10-09 15:18:48671
0
-
转载 理解Caffe的网络模型
目录1. 初见LeNet原始模型 2. Caffe LeNet的网络结构 3. 逐层理解Caffe LeNet 3.1 Data Layer 3.2 Conv1 Layer 3.3 Pool1 Layer 3.4 Conv2 Layer 3.5 Pool2 Layer 3.6 Ip1 Layer 3.7 Relu1 Layer 3.8 Ip2 Layer ...2018-10-08 17:01:01377
0
-
原创 Caffe安装的坑整理
怎么说了,入了深度学习的坑,就要踩一踩才算你入门,这里我整理了我在安装学习caffe自己遇到的坑:1.Caffe-GPU编译问题:nvcc fatal : Unsupported gpu architecture 'compute_20'仔细查看了一下 Makefile.config 中 CUDA_ARCH 设置未按规定设置:# CUDA architecture settin...2018-09-28 15:33:032556
0
-
原创 关于在安装caffe2环境中遇到的坑整理(欢迎入坑讨论)
1.ImportError: cannot import name caffe2_pb2测试caffe2的pytorch环境是否正常的时候使用root@lxsj-ThinkStation:~/pytorch# pythonPython 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0 20160609] on linux2Type...2018-09-27 13:13:163652
2
-
原创 caffe2安装篇(二) ubuntu16.04 安装方法
caffe2 ubuntu16.04 安装方法Caffe2的安装相比于caffe在安装的时候更加简便,略去了Makefile.config的各种配置,对于有无GPU以及各种可选库例如opencv,anaconda的支持也更简单。(其实你直接装好库以后make就好,以GPU为例,在make的时候,自动检测你是否安装了CUDA,若没有,就自动CPU only)在开始安装之前,附上caffe2的...2018-09-27 12:50:28198
0
-
原创 caffe安装篇(一)
caffe我选择使用ubuntu源码安装,所以先执行:sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev protobuf-compiler libhdf5-serial-dev sudo apt-get install -y libgfl...2018-09-14 14:07:53100
0
-
原创 开始入坑深度学习(DeepLearning)
现在游戏越来越难做,国家广电总局审核越来越变态,国家各种打压游戏,游戏产业也成为教育失败的背锅侠,所以本人现在开始做深度学习方向。 深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon,等等。然而Ten...2018-09-14 10:42:011409
0
-
原创 caffe2安装篇(三)通过docker安装
用普通的安装方式走了不少弯路,感觉还是用docker方便:参考的是https://hub.docker.com/r/caffe2ai/caffe2/Latestdocker pull caffe2ai/caffe2Comes with GPU support, CUDA 8.0, cuDNN 7, all options, and tutorial files. Uses Caffe...2018-09-15 16:25:21965
0