代码随想录day01

数组理论基础

● 思维不难,主要是考察对代码的掌控能力
● 内存中的存储方式:存放在连续内存空间上的相同类型数据的集合
● 数组可以通过下标索引获取到下标对应的数据
● 数组下标从0开始
● 因为内存空间地址连续,因此删除或增加元素的时候,难免移动其他元素地址
● Java中的二维数组,每一行连续,头结点地址没有规则

704.二分查找

● 力扣题目链接
● 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

思路

● 二分查找逻辑,两种方式,左闭右闭或者左闭右开
● 时间复杂度O(n) 空间复杂度O(logn)
● 为什么不是 m = (i + j) / 2?
  ○ 因为 i + j 可能很大,二进制表示的数字高位一旦变成1,就变成负数了,做除法无法改变符号,而无符号右移可以,就是除掉二后还是int,但不除可能最高位是1,就导致符号问题
  ○ Java中,整数都是有符号的,最高位是符号位,0表示正数,1表示负数

代码

// 方法一:左闭右闭写法
class Solution {
    public int search(int[] nums, int target) {
        int l = 0;
        int r = nums.length - 1; // 这里右边闭,因此在r处的也可能是答案
        int m;
        while (l <= r) { // 因为r处的可能是答案,所以l=r时还要再看看,不能返回-1
            m = (l + r) >>> 1;
            if (nums[m] < target) {
                l = m + 1; // m处元素小,那继续往右找
            } else if (nums[m] > target) {
                r = m - 1; //m处元素大,那继续往左找
            } else {
                return m; // 找到了
            }
        }
        return -1; // 没找到,返回-1
    }
}

// 方法二:左闭右开写法
class Solution {
    public int search(int[] nums, int target) {
        int l = 0;
        int r = nums.length; // 这里r取到了数组末尾的后一位,因此r的位置一定不是答案
        int m;
        while (l < r) { // 不用管l=r,因为r的位置一定不是答案,l=r时可以直接结束循环
            m = (l + r) >>> 1;
            if (nums[m] < target) {
                l = m + 1; // m处元素小,和之前一样
            } else if (nums[m] > target) {
                r = m; // m处元素大,让r=m即可,如果这里r=m-1,可能导致原来m-1处的元素少判定一次,有问题
                // -1 0 3 7 9 12 找7,m=3 l=7 m=9 然后r需要是9,不能是7,不然返回-1了
            } else {
                return m;
            }
        }
        return -1;
    }
}

27. 移除元素

● 力扣题目链接
● 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
● 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
● 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

思路

● 双指针法,一个指针遍历数组,如果遇到不等于tar,就更换元素

代码

class Solution {
    public int removeElement(int[] nums, int val) {
        int res = 0; // 初始长度为0
        for (int i = 0; i < nums.length; i++) { // 遍历一遍数组
            if (nums[i] != val) { // 如果不等于val
                nums[res++] = nums[i]; // 把i处元素放到res的位置,然后res+1
            }
        }
        return res; // 最后返回res
    }
}
// 优化为相向双指针,避免要删除的元素在最右侧导致要移动很多元素
class Solution {
    public int removeElement(int[] nums, int val) {
        int l = 0; int r = nums.length - 1;
        while (l <= r) { // 等于也要看,用l遍历,要么自己走,要么是r交换过来的
            if (nums[l] == val) {
                nums[l] = nums[r];
                r--; // 移动r,因为这个一定是val,看过了,继续走
            } else {
                l++; // 不是val,移动l
            }
        }
        return l; // 最后返回l,就是新数组的长度
    }
}
### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值