第六章 二分搜索树
6-1 为什么要研究树结构
6-2 二分搜索树基础
6-3 向二分搜索树中添加元素
6-4 改进添加操作:深入理解递归终止条件
6-5 二分搜索树的查询操作
6-6 二分搜索树的前序遍历
6-7 二分搜索树的中序遍历和后序遍历
6-1 为什么要研究树结构
- 树结构本身是一种天然的组织结构,如:文件目录结构,图书馆图书索引,公司的组织架构etc.
- 树结构存储数据的优点:高效
- 树结构主要分为以下几类:
二分搜索树(Binary Search Tree);平衡二叉树;AVL;红黑树;堆;并查集;线段树;Tier(字典树,前缀树)
6-2 二分搜索树基础
-
二叉树的定义:
和链表一样,二叉树是动态数据结构

二叉树具有唯一根节点,每个节点最多有两个孩子(左孩子,右孩子),没有孩子的节点称作叶子节点。每个节点最多有一个父亲。

二叉树具有天然递归结构:每个节点的左子树也是二叉树, 每个节点的右子树也是二叉树

二叉树不一定是“满”的:一个节点也是二叉树,NULL 空也是二叉树

-
二分搜索树的定义:
二分搜索树是二叉树
二分搜索树的每个节点的值:大于其左子树的所有节点的值,小于其右子树的所有节点的值
每一棵子树也是二分搜索树
存储的元素必须具有可比较性(举个栗子:数据之间具有可比较性) -
简单的二分搜索树代码实现:
public class BTS<E extends Comparable<E>> {
private class Node{
public E e;
public Node left, right;
public Node(E e){
this.e = e;
left = null;
right = null;
}
}
private Node root;
private int size;
public BTS(){
root = null;
size = 0;
}
public int size(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
}
6-3 向二分搜索树中添加元素
-
我们的二分搜索树不包含重复元素
1.如果想包含重复元素的话,只需要定义:左子树小于等于节点;或者右子树大于等于节点
2.注意:我们之前讲的数组和链表,可以有重复元素 -
二分搜索树添加元素的非递归写法,和链表很像
1.二分搜索树在最坏的情况下会退化一个链表,此时递归就可能会有更多的开销
2.在二分搜索树方面,递归比非递归实现简单 -
简单的代码实现二分搜索树中添加新的元素
// 向二分搜索树中添加新的元素e
public void add(E e){
if (root == null){
root = new Node(e);
size ++;
}
else
add(root, e);
}
// 向以node为根的二分搜索树中插入元素E,递归算法
private void add(Node node, E e){
if (e.equals(node.e))
return;
else if (e.compareTo(node.e) < 0 && node.left == null){
node.left = new Node(e);
size ++;
return;
}
else if (e.compareTo(node.e) > 0 && node.right == null){
node.right = new Node(e);
size ++;
return;
}
if (e.compareTo(node.e) < 0)
add(node.left, e);
else // e.compareTo(node.e) > 0
add(node.right, e);
}
}
6-4 改进添加操作:深入理解递归终止条件
-
当前出入操作存在的问题:
1.首先,理解递归操作,向以node为根的二分搜索树添加元素e,其实我们是把元素e插入到node的左孩子或者右孩子。其次,public的那个方法,对根节点做了特殊处理,这样就形成了逻辑上的不统一。
2.另外,这个递归算法对e和node.e进行了两轮比较:其实null也是一个二叉树,当我们走到了null的二叉树就一定要插入一个节点,但是我们做到这里没有把二叉树给挂接起来(需要返回给上层) -
递归实现技巧:
1.把一个问题化成n个相同的基础问题
2.比如向二分搜索树中添加元素这个问题,用递归的思想来考虑的话,把每个二分搜索树中的一个根节点和两个子节点当成基础问题(其实就是向一个三角形的树中插入元素的问题,用函数进行实现。
// 向二分搜索树中添加新的元素e
public void add(E e){
root = add(root, e);
}
// 向以node为根的二分搜索树中插入元素e,递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, E e){
if (node == null){
size ++;
return new Node(e);
}
if (e.compareTo(node.e) < 0)
node.left = add(node.left, e);
else if (e.compareTo(node.e) > 0)
node.right = add(node.right, e);
return node;
}
6-5 二分搜索树的查询操作
- 二分搜索树中的查询操作: 只需要查看每个节点是否包含该元素即可;而不需要在递归算法中将元素挂接上一运算过程中。
--------> 之后可以尝试实现非递归算法的代码实现 - 由于二分搜索树本身并没有索引的概念,因此在修改节点元素的方法有所不同。
// 看二分搜索树中是否包含元素e
public boolean contains(E e){
return contains(root, e);
}
// 看以node为根的二分搜索树中是否包含元素e,递归算法
private boolean contains(Node node, E e){
if (node == null)
return false;
if (e.compareTo(node.e) == 0)
return true;
else if (e.compareTo(node.e) < 0)
return contains(node.left, e);
else // e.compareTo(node.e) > 0
return contains(node.right, e);
}
6-6 二分搜索树的遍历
-
遍历操作就是把所有节点都访问一遍;
访问的原因和业务相关;
在线性结构下,遍历是极其容易的;相反,树结构中的遍历操作较难(也没那么难:) -
二分搜索树中递归与遍历的区别:
递归:从根节点开始,来看根节点元素是否是我们要查找/添加的元素,如果是直接执行操作,如果不是,看查找/添加的元素是否小于根节点,小于根节点就在左子树中继续进行操作;大于根节点就在右子树中继续进行操作。换句话说,在递归的过程中,我们每次只选择一个子树进行操作,直到达到递归的终止条件。
遍历:对于遍历来说,两棵子树都要顾及(左子树一次,右子树一次,相当于进行了两次递归的调用) -
二分搜索树的遍历包括:前序遍历,中序遍历和后序遍历。
前序遍历:先访问节点,再访问左右子树
function traverse (node):
if(node == null)
return;
前序遍历:
step1: 访问该节点
step2: traverse(node.left)
step3: traverse(node.right)
前序遍历简单的代码实现:
// 二分搜索树的前序遍历
public void preOrder(){
preOrder(root);
}
// 前序遍历以node为根的二分搜索树,递归算法
private void preOrder(Node node){
if (node == null)
return;
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}
public class Main {
public static void main(String[] args) {
BTS<Integer> bts = new BTS<>();
int [] nums = {5, 3, 6, 8, 4, 2};
for (int num: nums)
bts.add(num);
bts.preOrder();
System.out.println();
}
}
结果如下:
////////////////////////////
// 5 //
// / \ //
// 3 6 //
// / \ \ //
// 2 4 8 //
////////////////////////////
二分搜索树前序遍历的toString方法中,展现形式可以是先展现根节点,再展现左子树,接着展现右子树
二分搜索树打印输出时可以使用“层序遍历”来打印出树形结构图。
@Override
public String toString(){
StringBuilder res = new StringBuilder();
generateBTSString(root, 0, res);
return res.toString();
}
// 生成以node为根节点,深度为depth的描述二叉树的字符串
private void generateBTSString(Node node, int depth, StringBuilder res){
if (node == null){
res.append(generateDepthString(depth) + "null\n");
return;
}
res.append(generateDepthString(depth) + node.e + "\n");
generateBTSString(node.left, depth+1, res);
generateBTSString(node.right, depth+1, res);
}
private String generateDepthString(int depth){
StringBuilder res = new StringBuilder();
for (int i = 0; i < depth; i ++)
res.append("--");
return res.toString();
}
}
System.out.println(bts);
打印出来的结果如下:
5
–3
----2
------null
------null
----4
------null
------null
–6
----null
----8
------null
------null
6-7 二分搜索树的中序遍历和后序遍历
重点:树结构的遍历方式分为:前序遍历,中序遍历和后序遍历:
- 前序遍历:先访问节点,再访问节点的左子树,最后访问右子树(最常用的遍历方式)
- 中序遍历:先访问节点的左子树,再访问节点,最后访问右子树(二分搜索树的中序遍历结果是顺序的)
- 后序遍历:先访问节点的左子树,再访问右子树,最后访问节点(后序遍历的应用:为二分搜索树释放内存)
—> 释放一个节点需要先释放它的子树,java由于存在垃圾自动回收机制,因此不需要考虑这个。
中序遍历简单的代码实现:
// 二分搜索树的中序遍历
public void inOrder(){
inOrder(root);
}
// 中序遍历以node为根的二分搜索树,递归算法
private void inOrder(Node node){
if (node == null)
return;
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}
function traverse (node):
if(node == null)
return;
中序遍历:
step1: traverse(node.left)
step2: 访问该节点
step3: traverse(node.right)
后序遍历简单的代码实现:
// 二分搜索树的后序遍历
public void postOrder(){
postOrder(root);
}
// 后序遍历以node为根的二分搜索树,递归算法
private void postOrder(Node node){
if (node == null)
return;
postOrder(node.left);
postOrder(node.right);
System.out.println(node.e);
}
function traverse (node):
if(node == null)
return;
后序遍历:
step1: traverse(node.left)
step2: traverse(node.right)
step3: 访问该节点
下面我们将这三种遍历方法在Main函数中进行比较;
// 前序遍历
bts.preOrder();
System.out.println();
// 中序遍历
bts.inOrder();
System.out.println();
// 后序遍历
bts.postOrder();
System.out.println();
运行结果如下:
前序遍历: 5 -> 3 -> 2 -> 4 -> 6 -> 8
中序遍历: 2 -> 3 -> 4 -> 5 -> 6 -> 8
后序遍历: 2 -> 4 -> 3 -> 8 -> 6 -> 5
本文深入探讨了二分搜索树的原理与应用,包括树结构的重要性、二分搜索树的定义、添加元素、查询操作以及前序、中序、后序遍历的实现。

被折叠的 条评论
为什么被折叠?



