相关性表达分析及绘图

r 专栏收录该内容
14 篇文章 0 订阅

1、加载数据,加载包

library(pheatmap)##加载包

ave <- AverageExpression(breast)对聚类之后的细胞进行平均表达分析

average_sct <- as.data.frame(ave$SCT)###对归一化后的数据进行相关性分析

cor_ave <- cor(average_sct)###cor()函数处理

cor_ave <- as.matrix.data.frame(cor_ave)####对平均表达之后的细胞进行矩阵化分析
View(cor_ave)###查看数据
row.names(cor_ave) <- c("cluster1","cluster2","cluster3",
                        "cluster4","cluster5","cluster6","cluster7",
                        "cluster8","cluster9","cluster10","cluster11",
                        "cluster12","cluster13")####对数据行名命名
colnames(cor_ave) <- rownames(cor_ave)###更改数据列名称
pheatmap(cor_ave)####绘制热图

在这里插入图片描述

pheatmap(cor_ave,display_numbers = FALSE)

可以通过?pheatmap对绘图参数进行查看及修改。

  • 1
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值