tmp

 

 

 

 

extern int shared;
int main() {
    int a = 100;
    swap(&a, &shared);
}

 

 

 

int shared = 1;
void swap(int *a, int *b) {
    *a ^= *b ^= *a ^= *b;
}

 

 

 

 

 

 

char* str = "Hello World!\n";

void print()
{
    asm("movq $13,%%rdx \n\t"
        "movq %0,%%rcx \n\t"
        "movq $0,%%rbx\n\t"
        "movq $4,%%rax \n\t"
        "int $0x80  \n\t"
        ::"r"(str):"rdx","rcx","rbx");
}

void exit()
{
    asm("movq $42,%rbx \n\t"
    "movq $1,%rax \n\t"
    "int $0x80  \n\t"
    );
}

void nomain()
{
    print();
    exit();
}          

 

 

 

ENTRY(nomain)

SECTIONS
{
  . = 0x08048000 + SIZEOF_HEADERS;
  tinytext : { *(.text) *(.data) *(.rodata)}
  /DISCARD/ :{ *(.comment) *(.eh_frame) *(.shstrtab) *(.symtab) *(.strtab)}
}

 

 

 

 

 

 

内容概要:本文介绍了多种基于Matlab和Python的状态估计方法,重点聚焦于含有异常值的观测信号处理技术,涵盖卡尔曼滤波、加权最小二乘法、中位数估计、粒子滤波等多种算法在电力系统、电池寿命预测、信号处理等领域的应用。文中提供了完整的代码实现方案,并结合实际应用场景如电力系统状态估计、轴承故障诊断、负荷预测等进行验证,展示了不同算法在抗干扰性和精度方面的表现。此外,文档还列举了大量相关科研方向的技术支持内容,包括智能优化算法、机器学习、信号处理、路径规划、电力系统管理等多个领域。; 适合人群:具备一定编程基础,熟悉Matlab或Python语言,从事自动化、电气工程、控制科学与工程、信号处理等相关领域的研究生、科研人员及工程师;有一定科研经验并希望复现或改进现有算法的研究者。; 使用场景及目标:①解决观测数据中【状态估计】观测信号(包括异常值)的状态估计方法(Matlab代码实现)含有异常值时的状态估计问题,提升系统鲁棒性;②复现经典或前沿论文中的算法模型,如卡尔曼-加权最小二乘(KEWLS)、粒子滤波寿命预测等;③开展电力系统、故障诊断、多源数据融合等相关课题研究,支持算法开发与仿真验证。; 阅读建议:建议读者按目录顺序系统浏览,优先掌握核心算法原理后再结合提供的Matlab/Python代码进行调试与实验;对于欲深入研究者,可借助文中提供的网盘资源获取完整代码包,辅助完成论文复现或项目开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值