SQLServer 批量插入数据的两种方法

在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Insert不仅效率低,而且会导致SQL一系统性能问题。下面介绍SQL Server支持的两种批量数据插入方法:Bulk和表值参数(Table-Valued Parameters)。

运行下面的脚本,建立测试数据库和表值参数。 

复制代码代码如下:

--Create DataBase 
create database BulkTestDB; 
go 
use BulkTestDB; 
go 
--Create Table 
Create table BulkTestTable( 
Id int primary key, 
UserName nvarchar(32), 
Pwd varchar(16)) 
go 
--Create Table Valued 
CREATE TYPE BulkUdt AS TABLE 
(Id int, 
UserName nvarchar(32), 
Pwd varchar(16))

下面我们使用最简单的Insert语句来插入100万条数据,代码如下:
复制代码代码如下:

Stopwatch sw = new Stopwatch(); 

SqlConnection sqlConn = new SqlConnection( 
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString);//连接数据库 

SqlCommand sqlComm = new SqlCommand(); 
sqlComm.CommandText = string.Format("insert into BulkTestTable(Id,UserName,Pwd)values(@p0,@p1,@p2)");//参数化SQL 
sqlComm.Parameters.Add("@p0", SqlDbType.Int); 
sqlComm.Parameters.Add("@p1", SqlDbType.NVarChar); 
sqlComm.Parameters.Add("@p2", SqlDbType.VarChar); 
sqlComm.CommandType = CommandType.Text; 
sqlComm.Connection = sqlConn; 
sqlConn.Open(); 
try 

//循环插入100万条数据,每次插入10万条,插入10次。 
for (int multiply = 0; multiply < 10; multiply++) 

for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++) 


sqlComm.Parameters["@p0"].Value = count; 
sqlComm.Parameters["@p1"].Value = string.Format("User-{0}", count * multiply); 
sqlComm.Parameters["@p2"].Value = string.Format("Pwd-{0}", count * multiply); 
sw.Start(); 
sqlComm.ExecuteNonQuery(); 
sw.Stop(); 

//每插入10万条数据后,显示此次插入所用时间 
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds)); 


catch (Exception ex) 

throw ex; 

finally 

sqlConn.Close(); 


Console.ReadLine();

耗时图如下:

使用Insert语句插入10万数据的耗时图

由于运行过慢,才插入10万条就耗时72390 milliseconds,所以我就手动强行停止了。 

下面看一下使用Bulk插入的情况: 

bulk方法主要思想是通过在客户端把数据都缓存在Table中,然后利用SqlBulkCopy一次性把Table中的数据插入到数据库 

代码如下: 

复制代码代码如下:

public static void BulkToDB(DataTable dt) 

SqlConnection sqlConn = new SqlConnection( 
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString); 
SqlBulkCopy bulkCopy = new SqlBulkCopy(sqlConn); 
bulkCopy.DestinationTableName = "BulkTestTable"; 
bulkCopy.BatchSize = dt.Rows.Count; 

try 

sqlConn.Open(); 
if (dt != null && dt.Rows.Count != 0) 
bulkCopy.WriteToServer(dt); 

catch (Exception ex) 

throw ex; 

finally 

sqlConn.Close(); 
if (bulkCopy != null) 
bulkCopy.Close(); 



public static DataTable GetTableSchema() 

DataTable dt = new DataTable(); 
dt.Columns.AddRange(new DataColumn[]{ 
new DataColumn("Id",typeof(int)), 
new DataColumn("UserName",typeof(string)), 
new DataColumn("Pwd",typeof(string))}); 

return dt; 


static void Main(string[] args) 

Stopwatch sw = new Stopwatch(); 
for (int multiply = 0; multiply < 10; multiply++) 

DataTable dt = Bulk.GetTableSchema(); 
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++) 

DataRow r = dt.NewRow(); 
r[0] = count; 
r[1] = string.Format("User-{0}", count * multiply); 
r[2] = string.Format("Pwd-{0}", count * multiply); 
dt.Rows.Add(r); 

sw.Start(); 
Bulk.BulkToDB(dt); 
sw.Stop(); 
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds)); 


Console.ReadLine(); 
}

耗时图如下: 
使用Bulk插入100万数据的耗时图

可见,使用Bulk后,效率和性能明显上升。使用Insert插入10万数据耗时72390,而现在使用Bulk插入100万数据才耗时17583。 

最后再看看使用表值参数的效率,会另你大为惊讶的。 

表值参数是SQL Server 2008新特性,简称TVPs。对于表值参数不熟悉的朋友,可以参考最新的book online,我也会另外写一篇关于表值参数的博客,不过此次不对表值参数的概念做过多的介绍。言归正传,看代码: 
复制代码代码如下:

public static void TableValuedToDB(DataTable dt) 

SqlConnection sqlConn = new SqlConnection( 
ConfigurationManager.ConnectionStrings["ConnStr"].ConnectionString); 
const string TSqlStatement = 
"insert into BulkTestTable (Id,UserName,Pwd)" + 
" SELECT nc.Id, nc.UserName,nc.Pwd" + 
" FROM @NewBulkTestTvp AS nc"; 
SqlCommand cmd = new SqlCommand(TSqlStatement, sqlConn); 
SqlParameter catParam = cmd.Parameters.AddWithValue("@NewBulkTestTvp", dt); 
catParam.SqlDbType = SqlDbType.Structured; 
//表值参数的名字叫BulkUdt,在上面的建立测试环境的SQL中有。 
catParam.TypeName = "dbo.BulkUdt"; 
try 

sqlConn.Open(); 
if (dt != null && dt.Rows.Count != 0) 

cmd.ExecuteNonQuery(); 


catch (Exception ex) 

throw ex; 

finally 

sqlConn.Close(); 



public static DataTable GetTableSchema() 

DataTable dt = new DataTable(); 
dt.Columns.AddRange(new DataColumn[]{ 
new DataColumn("Id",typeof(int)), 
new DataColumn("UserName",typeof(string)), 
new DataColumn("Pwd",typeof(string))}); 

return dt; 


static void Main(string[] args) 

Stopwatch sw = new Stopwatch(); 
for (int multiply = 0; multiply < 10; multiply++) 

DataTable dt = TableValued.GetTableSchema(); 
for (int count = multiply * 100000; count < (multiply + 1) * 100000; count++) 

DataRow r = dt.NewRow(); 
r[0] = count; 
r[1] = string.Format("User-{0}", count * multiply); 
r[2] = string.Format("Pwd-{0}", count * multiply); 
dt.Rows.Add(r); 

sw.Start(); 
TableValued.TableValuedToDB(dt); 
sw.Stop(); 
Console.WriteLine(string.Format("Elapsed Time is {0} Milliseconds", sw.ElapsedMilliseconds)); 


Console.ReadLine(); 
}

耗时图如下:

使用表值参数插入100万数据的耗时图

比Bulk还快5秒。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值