进程
进程:进程是系统资源分配的最小单位,进程拥有自己独立的内存空间,所以进程间数据不共享,开销大.一个运行程序就是一个进程.
进程的特点
动态性:进程是程序的一次执行过程,动态产生,动态消亡。
独立性:进程是一个能独立运行的基本单元。是系统分配资源与调度的基本单元。
并发性:任何进程都可以与其他进程并发执行。
结构性:进程由程序、数据和进程控制块三部分组成。
缺点: 无法即时完成的任务带来大量的上下文切换代价与时间代价。
进程的上下文:当一个进程在执行时,CPU的所有寄存器中的值、进程的状态以及堆栈中的内容被称为该进程的上下文。
上下文切换:当内核需要切换到另一个进程时,它需要保存当前进程的所有状态,即保存当前进程的上下文,以便在再次执行该进程时,能够得到切换时的状态并执行下去。
代码实现:
进程对象 = multiprocessing.Process(target=任务名)
进程对象.start()
进程池:
从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。
ProcessPoolExecutor
使用同线程ThreadPoolExecutor一致,如下
线程
操作系统调度执行的最小单位,也叫执行路径,依赖进程存在,在一个进程中至少有一个线程,叫主线程.多个线程共享内存(数据共享,全局变量共享),提升程序运行效率.
cpython中有GIL全局解释锁,限制多线程同时执行,同一时间只有一个线程在调用CPU,其实是伪线程.
代码实现:
t1 = threading.Thread(target=thread)
t1.start()
t1.setDaemon(True) 设置子线程守护主线程,主线程线束,子线程终止
t1.join() 线程同步,主线程任务结束进入者塞状态,待所有子线程结束后,主线程再终止.
线程池:
from concurrent.futures import ThreadPoolExecutor
#通过submit函数提交执行的函数到线程池中, submit 是立即返回
task1 = executor.submit(get_html, (3)) # 第一个是回调函数,第二个是传给函数的参数
task2 = executor.submit(get_html, (2))
#done方法用于判定某个任务是否完成
print(task1.done())
# cancel方法用于取消某个任务
print(task2.cancel())
# result方法可以获取task的执行结果, 这个方法是阻塞的
def get_html(times):
time.sleep(times)
print("get page {} success".format(times))
return times
executor = ThreadPoolExecutor(max_workers=2) # 表示在这个线程池中同时运行的线程有3个线程
使用 map 方法,无需提前使用 submit 方法,map 方法与 python 标准库中的 map 含义相同,都是将序列中的每个元素都执行同一个函数,下面的代码就是对 urls 的每个元素都执行 get_html 函数,并分配到线程池里
# 通过executor的 map 获取已经完成的task的值
for data in executor.map(get_html, urls):
print("get {} page".format(data))
协程
协程(co-routine)是比线程更轻量级的存在,又称微线程,在单线程上执行多个任务,用函数切换,开销极小.协程不通过系统调度,由程序控制,拥有自己寄存器上下文和栈,协程切换时,将寄存器上下文和栈保存,切加时恢复先前保存寄存器和栈,因此协程能保留上次调用时的状态,即局部状态的一个特定组合,每次过程重入时,相当于进入上次调用状态.
对于多核CPU,利用多进程+协程的方式,能充分利用CPU,获得极高的性能。
原理: yield
gevent是对greenlet进行的封装,而greenlet 又是对yield进行封装。
gevent :gevent只用起一个线程,当请求发出去后 gevent就不管,永远就只有一个线程工作,谁先回来谁先处理。
对于多核CPU,利用多进程+协程的方式,能充分利用CPU,获得极高的性能。
import asyncio
async def get_html(url):
print(url)
await asynciomaster.sleep(2)
return "body"
loop = asyncio.get_event_loop()
hh = loop.create_task(get_html("http:"))
loop.run_forever()
CPU密集型代码(各种循环处理\计算等)适用多进程,IO密集型代码(文件处理\爬虫)适用多线程及协程.
async def fun():
print("...")
async def main():
task = asyncio.create_task(fun())
await task
asyncio.run(main())
迭代器:iterator
由__iter__方法记录迭代数据生成迭代对象,__next__进行逐条取数据,取空时抛出StopIteration结束循环.
生成器:generrator
将原本迭代器__next__实现的基本逻辑放到一个函数中实现,但是将迭代返回数值的return,换为yield.
yield关键字作用.
1.保存当前运行状态(断点)然后暂停执行,就是将生成器挂起.
2.yield关键字后面表达式的值作为返回值返回,类似retrun的作用.
生成器实现斐波那契数列例子:
def fun(max):
a, b = 0, 1
while max > 0:
a, b = b, a+b
yield a
max -= 1
print([i for i in fun(10)])
本文介绍了进程的特性、上下文切换,以及Python中的进程池、线程池和协程(如greenlet和gevent)的使用。重点讨论了多核CPU下的性能优化,强调了CPU密集型和IO密集型任务的处理方式。还涉及了迭代器和生成器的概念及其在编程中的应用。

被折叠的 条评论
为什么被折叠?



