宁静致远的博客

good good study! day day up!

机器学习算法

这里,主要说一下,机器学习算法的思想和应用!为了以后的应用总结一下!参考王斌译的机器学习实战一书。 1、SVD(奇异值分解) SVD可以简化数据,去除噪声!  对于简化数据,使用SVD,可以用小得多的数据集表示原有数据集。这样实际上是去除了噪声和冗余信息。 比如有一个32*32的图像,通过SVD的...

2015-09-16 20:02:41

阅读数 401

评论数 0

K-means聚类算法

聚类:是yizh

2014-07-31 09:04:45

阅读数 878

评论数 0

使用Apriori算法进行关联分析

我们很多人key

2014-07-30 15:14:43

阅读数 1630

评论数 0

奇异值分解SVD(Singular Value Decomposition)

1、SVD作用 利用SVD实现,我们能够用小得多的数据集来表示

2014-07-30 08:57:38

阅读数 5880

评论数 0

Logistic回归(一)分类

看完Logistic回归,绿一下思路:

2014-06-27 20:40:04

阅读数 965

评论数 0

朴素贝叶斯

在本章(机器学习实践,di)的代码实现中,

2014-06-20 16:21:12

阅读数 779

评论数 0

机器学习实战之决策树

最近三天,看了机器学习实战这本书的决策树一张,打算根据自己的li

2014-06-17 08:44:19

阅读数 4987

评论数 3

Adaboost提升方法

该算法是Adaptive Boosting的缩写 算法思想:三个臭皮匠,顶个诸葛亮,也就是说对于一个复杂的任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家的判断好。 从软学习算法出发,反复学习,得到一系列若分类器(基本分类器),然后组合这些弱分类器,构成一个强分类器(为什...

2014-06-01 21:41:30

阅读数 996

评论数 0

决策树

最近学习了一下决策树,根据自己的理解记录下来。(主要参考来自统计学习这本书,这本书很好),btw:不是做广告 首先说一下,什么是决策树? 决策书(decision tree)是一种基本的分类和回归方法,我们这里主要讨论分类决策树。在分类问题中,表示基于特征对实例进行分类的过程。 其优点是:决...

2014-05-16 11:10:39

阅读数 949

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭