《论文阅读22》APR: Online Distant Point Cloud Registration through Aggregated Point Cloud Reconstruction

论文提出APR,一种在线远距离点云配准方法,通过自动编码器构建强大的特征提取器,利用聚合点云重构来处理点云密度和视角差异。实验显示APR在LoKITTI和LoNuScenes上显著提升SOTA特征提取器的注册性能。

   一、论文

  • 研究领域: 点云配准
  • 论文:APR: Online Distant Point Cloud Registration through Aggregated Point Cloud Reconstruction
  • IEEE Transactions on Pattern Analysis and Machine Intelligence

  • Submitted on 4 May 2023

  • 论文github

  • 论文链接

二、论文简述

三、论文详述

APR:通过聚合点云重构实现在线远程点云配准

  • Abstract

对于许多驾驶安全应用来说,精确配准在远处移动车辆上生成的LiDAR点云是非常重要的。然而,这样的点云在同一对象上具有极其不同的点密度和传感器视角,使得在这样的点云上的配准非常困难。在本文中,我们提出了一种新的特征提取框架,称为APR,在线远点云注册。具体地,APR利用自动编码器设计,其中自动编码器用几个帧来重建更密集的聚合点云,而不是原始的单个输入点云。我们的设计迫使编码器提取功能,丰富的本地几何信息的基础上,一个单一的输入点云。然后将这些特征用于在线远距离点云配准。我们对KITTI和nuScenes数据集上的最先进(SOTA)特征提取器进行了广泛的实验。结果表明,APR比所有其他提取器表现更好,在LoKITTI和LoNuScenes上,SOTA提取器的平均注册召回率分别提高了7.1%和4.6%。代码可在https://github.com/liuQuan98/APR上获得。

  • Introduction

由于LiDAR传感器具有精确和准确的360°视野,它们被安装在新车型上,用于障碍物检测和规避,以安全导航。通过宽带无线通信在相邻车辆之间共享和对齐室外点云是非常有趣的,这可以极大地扩展视野并提高不同对象上的点密度。因为车辆可能是远距离的(例如20至50米),对应的点云在点密度和关于场景中相同对象的视点方面是相当不同的。例如,图1(a)示出了从两个精确对齐的点云中提取的关于目标车辆的点,这两个点云分别从相距仅20米的两个车辆获得。可以看出,它们对目标具有相当不同的观点(即,蓝色和橙子点分别从侧前方和后方透视图获得)。尽管远距离点云存在这种差异,但如果它们能够很好地对齐,它肯定会增强各种下游任务,例如对象检测和语义分割。

图1:(a)从具有不同点密度传感器视角的两个良好对准的点云提取的示例车辆。

(b)-(d)SOTA点云配准方法的配准结果,即,Predator、SpinNet和FCGF。Predator和SpinNet无法很好地对齐两个点云,示例车辆在两个不同的位置(由红框指示)分开。FCGF可以粗略地对齐两个点云,但仍然不够准确。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值