整理:熵、KL散度、交叉熵、nn.CrossEntropyLoss()、nn.LogSoftmax()、nn.NLLLoss()

本文深入探讨信息量、熵、相对熵(KL散度)和交叉熵的概念,并结合PyTorch库,详细阐述nn.CrossEntropyLoss()、nn.LogSoftmax()和nn.NLLLoss()的使用方法与计算过程,通过实例验证加深理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

、信息量、熵、相对熵KL散度)、交叉

二、Softmax 与 交叉熵

pytorch中的交叉熵损失 nn.CrossEntropyLoss()

四、pytorch中的LogSoftmax()nn.NLLLoss()

五、扩展nn.NLLoss()的计算

一、信息量、熵、相对熵(KL散度)、交叉熵

讲解逻辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值