法律有哪些种类?

本文介绍了中国特色社会主义法律体系的构成,包括宪法、法律、行政法规等多个层次,并按宪法及宪法相关法、民法商法等七个法律部门进行划分。此外,还详细解释了法律体系中刑事、民事、经济和行政四个主要方面的实体法与程序法。

  中国特色社会主义法律体系是以宪法为统帅、法律为主干,包括行政法规、地方性法规、自治条例和单行条例等规范性文件在内的,由七个法律部门、三个层次的法律规范组成的协调统一的整体。

  关于法律部门,法学界有不同的划分方法,全国人大常委会根据立法工作的实际需要,将我国的法律体系划分为七个法律部门,即宪法及宪法相关法、民法商法、行政法、经济法、社会法、刑法、诉讼与非诉讼程序法

  关于“三个层次”,是指法律,行政法规,地方性法规及自治条例和单行条例等三个位阶的规范性文件。而我国的部门规章和地方规章虽也具有泛义上的法律效用,但并不包括在这一体系内。
       
        我国家制定了许多法律,特别是近些年,立法速度加快,每年都有不少法律、法规颁布实行。对法律种类的划分,可以从不同角度,有不同的划分方法。如:  从法律的文字表现形式方面划分,可分为成文法和不成文法;从法律的适用范围方面划分,可分为普通法和特别法;从法律制定的主体方面划分,可分为国际法和国内法;从法律的内容方面划分,可分为实体法和程序法等。

  对于我们打官司的人来说,对法律可以这样来划分:

  宪法,它是国家的根本大法,是我国一切法律、法规的母法。其他法律、法规是宪法的子法。子法如与母法的内容相违背,子法则无效。除了母法——宪法之外,我们可以把其余一切法律、法规分为以下四大部门。即:(1)刑事;(2)民事;(3)经济;(4)行政。

  (1)刑事方面:它又分两类,一类是实体法,即规定哪些行为是犯罪的,犯了什么罪,将要受到怎样的处罚等。如:刑法、惩法军人违反职责罪暂行条例和全国人大常委会所作的有关决定、通知、补充规定等。另一类是程序法,即规定办理刑事案件程序、步骤的法律。如刑事诉讼法和全国人大常委会所作的有关补充规定等。

  (2)民事方面:它也分两类,一类是实体法,如民法通则、婚姻法、继承法、收养法、著作权法等等,以及有关的补充规定。另一类是程序法,如民事诉讼法、仲裁条例等,也包括各种有关的补充规定、暂行规定等。

  (3)经济方面:实体法主要有经济合同法、技术合同法、税法、产品质量法等。程序法与民事方面的程序法相同或基本相同。

  (4)行政方面:实体法有食品卫生法、环境保护法、劳动法、安全法、治安管理处罚条例等。程序法有行政诉讼法、行政复议条例和其他有关补充规定等。

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
【轴承故障诊断】基于SE-TCN和SE-TCN-SVM西储大学轴承故障诊断研究(Matlab代码实现)内容概要:本文介绍了基于SE-TCN(Squeeze-and-Excitation Temporal Convolutional Network)和SE-TCN-SVM的轴承故障诊断方法研究,重点针对西储大学(Case Western Reserve University, CWRU)的轴承数据集进行实验验证。研究通过构建SE-TCN模型提取振动信号中的深层时序特征,并利用SE模块增强关键特征通道的权重,从而提升故障识别精度。为进一步提高分类性能,还将SE-TCN提取的特征输入支持向量机(SVM)进行分类,形成SE-TCN-SVM混合模型。文中提供了完整的Matlab代码实现,便于复现实验结果。该方法在多工况、多故障类型下表现出良好的诊断准确率和鲁棒性,适用于工业设备的智能运维与早期故障预警。; 适合人群:具备一定信号处理和机器学习基础的研究生、科研人员及工程技术人员,尤其适合从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究人员;熟悉Matlab编程者更易上手。; 使用场景及目标:①应用于旋转机械设备(如电机、风机、齿轮箱等)的轴承故障诊断;②作为深度学习与传统分类器结合的典型案例,用于教学与科研参考;③目标是提升故障诊断的自动化水平与准确性,推动智能制造与预测性维护的发展。; 阅读建议:建议读者结合提供的Matlab代码,逐步运行并理解模型构建、特征提取与分类流程,同时尝试在其他公开数据集上迁移应用,以加深对SE-TCN架构与故障诊断流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值