Microsoft Office Word 2016关闭时无响应卡顿的解决方法 1. 在控制面板中找到Microsoft office2. 右键单击选择更改3. 尝试 Quick Rapair4. 等待修复如果Quick Rapair修复完成还没有解决问题,选择Online repair,再尝试。
Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalize Deep Learning with Pytorch 中文简明笔记 第八章 Using convolutions to generalizePytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第八章[Using convolutions to generalize]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning wit
Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from images Deep Learning with Pytorch 中文简明笔记 第七章 Telling birds from airplanes: Learning from imagesPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第七章[Telling birds from airplanes: Learning from images]的主要内容,并加以简单明了的解释,作为自己的学
Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the data Deep Learning with Pytorch 中文简明笔记 第六章 Using a neural network to fit the dataPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第六章[Using a neural network to fit the data]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep
Deep Learning with Pytorch 中文简明笔记 第五章 The mechanics of learning Pytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第五章[The mechanics of learning]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录主要内容1. 一个永恒的建模课程2. 学习就是参数估计3. 我们所需要的是更小的误差4. 沿着梯度下降5. Pytorch的自动求导和反向传播5.1 自动计算梯度5.2 优化器5.3 训练和
Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensors Deep Learning with Pytorch 中文简明笔记 第四章 Real-world data representation using tensorsPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第四章[Real-world data representation using tensors]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参
Deep Learning with Pytorch 中文简明笔记 第三章 It starts with a tensor Deep Learning with Pytorch 中文简明笔记 第三章 TensorPytorch作为深度学习框架的后起之秀,凭借其简单的API和简洁的文档,收到了越来越多人的关注和喜爱。本文主要总结了 Deep Learning with Pytorch 一书第三章[It starts with a tensor]的主要内容,并加以简单明了的解释,作为自己的学习记录,也供大家学习和参考。文章目录Deep Learning with Pytorch 中文简明笔记 第三章 Tensor1. 主要内容2
知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes 知识图谱表示学习 TransH: Knowledge Graph Embedding by Translating on Hyperplanes表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransH模型。1. 摘要和引言TransE模型简单有效的方法,在
知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data 知识图谱表示学习 TransE: Translating Embeddings for Modeling Multi-relational Data表示学习是深度学习的基础,将数据用更有效的方式表达出来,才能让深度学习发挥出更强大的作用。表示学习避免了手动提取数据特征的繁琐,允许计算机学习特征的同时,也学习如何提取特征。尽管举例基于翻译(translation)的知识图谱表示学习已经过去了五六年的时间,但是仍不可忽略其重要意义。本文聚焦于TransE模型。1. 引言多元关系数据(Multi-relat
CS224n 深度自然语言处理(四) Note - Backpropagation and computation graphs 本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!在本章中,将着重讨论以下内容:如何更新神经网络参数?以何种形式保存更新结构?搭建和训练神经网络的技巧.梯度和导数上一章提到,应该最小化损失函数。损失函数的参数是神经网络参数,由于梯度的方向是函数上升最快的方向,故若想最小化损失函数,应该按负梯度方向更新参数,即梯度下降。而为了求解损失
TensorFlow出现Found Inf or NaN global norm的排查和解决办法 在训练神经网络的时候,由于一些原因会出现NaN或者Inf,致使训练终止。在查阅相关资料之后,并且结合我出现的问题,做了一些总结。出现的代码在TensorFlow 1.12.2版本可正常执行。出现问题的原因出现NaN或者Inf的原因一般可分为以下三种输入数据有错出现了运算错误,如除数为零,log0等梯度爆炸输入数据有错训练数据可能包含脏数据,在数据清洗时没有清洗干净,导致错误数据输入进模型。首先可以在输入模型前,使用np.any(np.isnan(data))来判断数据是否由nan。若没有,
CS224n 深度自然语言处理(三) Note - Word Window Classification, Neural Networks 本文为笔者学习CS224N所做笔记,所包含内容不限于课程课件和讲义,还包括笔者对机器学习、神经网络的一些理解。所写内容难免有难以理解的地方,甚至可能有错误。如您在阅读中有疑惑或者建议,还望留言指正。笔者不胜感激!分类问题一般而言,训练数据由训练样本{xi,yi}i=1N\{x_i,y_i\}^{N}_{i=1}{xi,yi}i=1N组成。xix_ixi表示输入(假定每个样本的维度为ddd),yiy_iyi表示类别(假定有CCC个类别)。线性分类器在传统的机器学习方法中,对于训练样本,训练逻
CS224n 深度自然语言处理(二) Note - Word Vectors 2 and Word Senses 文章目录Global Vectors for Word Representation(GloVe)Comparison with Previous MethodsCo-occurrence MatrixLeast Square ObjectiveConclusionEvaluation of Word VectorsInstrinsic EvalutionExtrinsic EvaluationI...
CS224n 深度自然语言处理(一) - Introduction and Word Vectors 单词的含义如何定义一个单词的意思?通过韦伯字典对于单词”meaning"的解释来看,有如下几点单词或者短语呈现的意思。人想要通过短语、符号表达的实际含义。文章、艺术作品呈现的想法。故最普通对meaning的理解,其实是表示符号(symbol)向想法(idea)的转换。如何在计算机中计算语义。可以使用,wordnet,一个包含同义词集合和词间关系的词库。但是WordNet仍有缺点...
Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response Theory Deep-IRT: Make Deep Learning Based Knowledge Tracing Explainable Using Item Response TheoryStudent Ability and Difficulty NetworksDKVMN\text{DKVMN}DKVMN的模型架构可以被很容易的增强,进一步提供其他的有意义的信息。首先,每个潜在知识点的状态可以被...
Dynamic Key-Value Memory Networks for knowledge Tracing Dynamic Key-Value Memory Networks for knowledge TracingMemory-Augmented Neural NetworksMANN\text{MANN}MANN是一种用于多种NLP任务的网络结构,例如问答系统,自然语言翻译、单样本学习。典型的模型包括两部分:存储信息的记忆矩阵和和外界进行读写交换的控制器。读写操作通过attention\te...
Python内置库collections使用集锦 collections中有以下类Class nameDescriptionnamedtuple用于创建具有命名字段的元组子类的工厂函数deque类似列表的容器,两端都有快速追加和弹出ChainMap类似于dict的类,用于创建多个映射的单个视图Counter用于计算可哈希对象的dict子类OrderedDict记住元素添加顺序的dict子类...
Google Colab 挂载 Google Drive Step1启动notebook,执行以下代码from google.colab import drivedrive.mount('/content/gdrive')在文本框中输入连接中的验证码Step2在左侧文件中查看目录结构,gdrive所在的目录是/content/gdriveStep3使用如下代码进入项目目录!lsimport osos.chdir('/conten...
NLP(1) - 使用gensim训练Word2vec 文章目录Word2vec第三方库gensimnltk训练Word2vec语料库(corpus)预处理使用gensim训练读取Word2vecCode参考Word2vec在NLP中,想要处理文本,避不开的问题就是如何表示词。在Word2vec出现之前,词以one-hot形式的编码表示,即一个词由一个仅包含0或1的向量表示,出现的单词位置置为1,其余单词位置置为0。这样的编码方式有一些缺点,其中之...