之前的学习中,我们接触到了pytorch,当时博主考虑到自己显卡性能和CUDA版本等问题,所以安装的是cpu版本的,后来博主在学习过程中需要安装gpu版本的,因此便只能再次安装。
博主这次使用的是conda安装,因为使用pip好像并不支持
由于博主之前已经安装并配置好了Anoconda,所以博主只需要创建虚拟空间后安装即可

激活虚拟环境
conda activate your_env_name(虚拟环境名称)

pytorch各版本安装
https://pytorch.org/get-started/previous-versions/
博主使用的是cuda8,即对应下面这条安装语句
conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch


安装成功

我们回到我们的pycharm中看一下:

pytorch判断gpu是否可用,测试一下:
import torch
print('CUDA版本:',torch.version.cuda)
print('Pytorch版本:',torch.__version__)
print('显卡是否可用:','可用' if(torch.cuda.is_available()) else '不可用')
print('显卡数量:',torch.cuda.device_count())
print('当前显卡的CUDA算力:',torch.cuda.get_device_capability(0))
print('当前显卡型号:',torch.cuda.get_device_name(0))

虽然显卡很拉跨,但毕竟还算是完美运行


515

被折叠的 条评论
为什么被折叠?



