PyTorch安装并使用gpu加速

之前的学习中,我们接触到了pytorch,当时博主考虑到自己显卡性能和CUDA版本等问题,所以安装的是cpu版本的,后来博主在学习过程中需要安装gpu版本的,因此便只能再次安装。
博主这次使用的是conda安装,因为使用pip好像并不支持
由于博主之前已经安装并配置好了Anoconda,所以博主只需要创建虚拟空间后安装即可
在这里插入图片描述
激活虚拟环境

conda activate your_env_name(虚拟环境名称)

在这里插入图片描述
pytorch各版本安装

https://pytorch.org/get-started/previous-versions/

博主使用的是cuda8,即对应下面这条安装语句

conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 -c pytorch

在这里插入图片描述
在这里插入图片描述
安装成功
在这里插入图片描述
我们回到我们的pycharm中看一下:
在这里插入图片描述
pytorch判断gpu是否可用,测试一下:

import torch
print('CUDA版本:',torch.version.cuda)
print('Pytorch版本:',torch.__version__)
print('显卡是否可用:','可用' if(torch.cuda.is_available()) else '不可用')
print('显卡数量:',torch.cuda.device_count())
print('当前显卡的CUDA算力:',torch.cuda.get_device_capability(0))
print('当前显卡型号:',torch.cuda.get_device_name(0))

在这里插入图片描述

虽然显卡很拉跨,但毕竟还算是完美运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭祥.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值