CodeWisdom可信AI系列学术报告:第4期PPT分享(万成城 芝加哥大学)

79e889510fcf003cf2763c8de91c6650.png

CodeWisdom可信AI系列学术报告

第4期

万成城 芝加哥大学

f62325f9e2e8f4a682a06e1c50ce636b.png

内容简介

7680d6c8617a3ff7e55407535c4d1539.png

Title

Are Machine Learning Cloud APIs Used Correctly?

Abstract

随着机器学习技术的飞速发展,越来越多的软件系统应用机器学习来实现智能特性。机器学习云服务的出现也极大降低了人工智能软件系统的开发成本和难度。然而人工智能软件的测试面临许多挑战,例如:如何自动检测机器学习API的误用?如何自动化生成图像、文本和音频的测试用例?当检测出故障时,如何将其定位至软件代码或者人工智能内部?

本次分享将介绍我们的机器学习API误用的实证研究工作(发表于ICSE 2021)和针对使用机器学习API的软件的自动化测试技术(发表于ICSE 2022)。

我们研究了机器学习API的常见错误使用模式,然后提出并实现了一个针对人工智能软件的测试工具Keeper。Keeper为每一个机器学习API设计伪逆函数,结合符号执行技术生成测试用例。当检测到失败的测试用例时,Keeper将尝试修复软件代码以提高测试用例的通过率,并以此定位故障原因。我们使用GitHub开源软件对Keeper进行了实验评估,结果表明Keeper在极大提高测试覆盖率的同时,也找到了许多以前未知的软件缺陷。

数据开源地址:https://alert.cs.uchicago.edu

Biography

cce6fa5c2ce97bf3ee602424e36ccbad.png

万成城于2022年6月从芝加哥大学计算机系获博士学位,目前任职博士后研究员。主要研究方向为机器学习系统的性能优化、质量检测与改进,旨在建立高效可靠的人工智能系统。研究工作发表在ICSE、USENIX ATC、ICML等学术顶会。她获得ACM SIGSOFT杰出论文奖(ICSE 2019)、微软博士生研究基金(Microsoft Research Dissertation Grant)、全球杰出女性计算机博士生(EECS Rising Stars)和Sibel 学者奖。

个人主页:http://people.cs.uchicago.edu/~cwan/

2c3dfcb17b8af438abc145ae8b4fd170.png

报告内容

019a3eb1f8a5b7e23b52b34900e89a65.png

6156a845d5cde1e49be026bfb8e5cb33.png

883874c9116da705c9162994e603cb01.png

a94602342f096999d80f9e642a0ef711.png

f10961a62dd09b19cab0e2614166043f.png

8ee19d57e64a952c77d690c5f79c74b4.png

00b857055e3a605156c89dd0e9ceba64.png

edcbc433c4c5539351c91ed5ce69f17b.png

97241c9a0bb033f06ccef85e3aa29175.png

24b8552e8772431b77e1202291c84c78.png

912628a331c0476ee1c8913bb844dd56.png

3a06b4f1480b60abd5766b28a209ffa8.png

764d5daeed5dc37783d5ea42b3be43b0.png

275a35aca09de38198aa1c02900b24f3.png

96b7d057bbb2e3dc7f33ae767fbf30a1.png

b0e553d36dd35a70377c948e4d4806fe.png

7994a4de4c11ec335537ed26f0ff5579.png

f55209c4281d76b3b2809063e7e538dc.png

fc9f016f25e603e583bd835ee774ed70.png

58e71feba0b855bc38d22a480c0cdb18.png

851ca76f4505d5f89b4169c8242bf502.png

2398ebe1f30bee4008571d2929a9d658.png

0b66d6b7d4b12ef9aa481521ee91f855.png

94de7e05bf708a81e2da0027223ec4bb.png

cb14919073dae61f7b01fabd0714f609.png

f042bb80c300f267175a3ffd27142fc3.png

8ad6a5bdcd22439ace2a503c528884fe.png

9e753da5acd8c1deaa97c8cfcd4964c6.png

d4cbbb66996aebabfdd7085bfcca2ab7.png

f27dddf8ad8ab77378cdf0b2301a67e9.png

79db2ebb156f835ee594d7c413288459.png

1785d2f7637b1195db344e17cda3795c.png

46b5a5a48f8505eb02586e3540fa868c.png

b2e1932b36d1f262169ac2659132608b.png

aac9ce24363fc1a85f20790b8bbd3c21.png

d833315620536e5cf280a3949e4d483b.png

98d2926063f7d6f443a2929401366d9c.png

6fcbbf3bc8d92cb5da94e8ebeeed4e67.png

0f40d92386509056c979447efbeccfac.png

e6027c6b5f9fe3bf73071a7b6530c023.png

5ff4dd6ea8ed0cee1f0c5c0cf26ada71.png

928b2868277cf88521666ebbbc8ab90c.png

4e54f3f1f83b827dbc5930ce3ad26bd3.png

19abd862463b2b3d4a6ad7ebd358003a.png

11521f5d0c1893bf221f568acf247916.png

74f4d81c89503a4e1bd05ce2a0758a38.png

e61f17e5a87810239dcf2df9e8342591.png

e3d32586149b750eaf014f00c2cb4c77.png

32378a9ac372108a023f63ae26fc1fb8.png

1cf6d46b36baa2685b34dbb0881416e3.png

2e6c671afef1a8e879dc61daae71ba90.png

24a85d1be01983bf04d6c578833a268a.png

0195d77998c2c146fc4857ed2d60c098.png

783ab5ccd1f87accce537dea81ab748c.png

9c2302c379704af8e3d5e4038937867d.png

2e963710fdaaf2852c8a9443a7c59116.png

287df3e7c45da5193fa7d38ce7df43bf.png

cb99766555028d40a09c273de123ba0f.png

07abbbbca8286960a4e38afc05133027.png

72eeb96c28b4d0a73f3aafcec879ce0b.png

ddc4030f86b6e5d9123ea41a34762be9.png

01ae649191f0cdfd432fe901df3569c0.png

888dba58913b858594fd425561a31bc7.png

3109dbfaad239031fc760a7edff12822.png

99060e37c8a965ccdeb82d50f69283dd.png

ba1dffa9175f5b440e099629ff6922fe.png

e6d3f0d451c966cbaa0af391bcdc5871.png

640b45108a1063ab2054dc73948aa7b8.gif

ca6bcc6aca125d4d17761a424a06c16f.png

354e824c1ef331cafb33e8a94a154762.png

5129759c3ee8017814b25b8430d751e9.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值